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Goal
Establish a correspondence between the Laplacian flow and coflow on torus

bundles over Calabi-Yau 2- and 3-folds with Monge-Ampére flows on the base.

This is joint work with Sébastien Picard.
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Main Results

Theorem (Picard-S.)
Start the Laplacian flow with initial data
o=—drAdr? Adr®+dr' Aw+dr? ARe(T)+ dr® AIm(T) on T3 x X*,
or
¢ =Re(Y)—drAworS! x X8,

Then the Laplacian flow exists for all time t and is given by the MAS flow (up fo
diffeomorphism) and converges to a stationary point
Yoo = —dr Adr? Adr® + dr! A ©F wey
+dr? ARe(©%, 1) +dr® AIm (0%, 1) on T3 x x*
or
Yoo = Re(©7,T) — dr A©* wey on S! x X8,

where O is a diffeomorphism on the base and wcy is the unique Ricci-flat
Kdhler metric in the class [w].
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Main Results

Theorem (Picard-S.)
Start the Laplacian coflow with initial data
$=-275. %wz 1275 drP Adrd Aw
128 a3 Adrl ARe(T) + 23 -dr! Adr? A Im(T)on T3 x X4
or -
¢ =—2.dr AIm(T) — 1 §w2 on 8! x Xx8.
Then the Laplacian coflow exists for all time t and is given by the Kdhler-Ricci
flow (up to diffeomorphism) and converges to a stationary point
O _4 9 3 X
Yoo = —273 - iewwcy+2 3.dre Adr N O wey
125 .dr3 Adrl ARe (05, T) + 23 . drl Adr? AIm (%, T) on T3 x X4

or

1
4 2
where O is a diffeomorphism on the base and wcy is the unique Ricci-flat
Kdhler metric in the class [w].

Yoo = —2 - dr AIm (0%, Y) — Oz wiy on St x X5,
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Calabi-Yau Manifolds

Definition
A (Kahler) Calabi-Yau n-fold X is a complex manifold with dimension n (and
real dimension 2n) admitting:

® aKdahler metric w,
® and a nowhere vanishing holomorphic (n, 0)-form T.
Throughout, we will refer to the pair (w, T) as a (Kahler) Calabi-Yau structure.

A Calabi-Yau manifold has the following properties:
® the canonical bundle Kx is frivial,
e the first Chern class ¢; (X) vanishes,

e the Ricci-form Ric(w,J) is given by 2i89(log | T|.,) and it vanishes if and only
if |Y|., is constant.

and Limits
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Yau’s Theorem

Theorem (Yau)
Let (X,w) be a compact Kdhler manifold with ¢ (X) =0 andlet F: X — R be a

function such that
/ efw = / w™.
X X

Then there is a smooth function u: X — R, unique up to the addition of a
constant, such that

w + i90u > 0 and (w + i9u)"™ = ef ™.

Yau’s theorem implies the existence of a Ricci-flat K&hler metric in the
cohomology class [w].

This metric is unique in its K&hler class. When X is a Calabi-Yau manifold, we
denote it by wey and refer to it as a Calabi-Yau metric.

Yau’s theorem and its proof involved the solving of complex Monge-Ampére
equations, which have since been studied extensively.
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Monge-Ampere Flows

On a compact Kdhler manifold, there is a class of flows of K&hler metrics that
are related to complex Monge-Ampére equations.

Theorem (Picard-Zhang)

Let (X,w) be a compact Kdhler manifold. Let a: X — R be a function and let
H: Rt — R be a smooth function with H' > 0. Then there exists a solution u; to
the parabolic complex Monge-Ampére equation

gut _ H<e_adet(w + iagut)»
detw

B w + 100u; > 0, uy = 0.

This solution exists for all time t. Moreover, the metrics &; = w + 100w, converge
in each C*(X, g)-norm to a limiting metric w’ € [w].

When X is a Calabi-Yau manifold, the limiting metric is the Calabi-Yau metric
wey
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Monge-Ampere Flows

Certain choices of the functions a and H give familiar special cases:
® Kdhler-Ricci flow (H(p) = log p).
* Anomaly flow (H(p) = p).

We have two particular cases of importance:
o MAS3 flow (a = 2log| Y|, H = 6Kp3):

—21log |T|w det(w —+ lagl,l{) > %7

1o}
it = 6K (e det w

ot
e Kd&hler-Ricci flow (a = 21og |Y|w. H = 2K log p):

ﬁut — 9Klog (det(w + i00uy)
detw

_ 2
o ) 2K log | T2

ated Structures Laplacian Flow Laplacian Coflow Convergence and Limits
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Uniform Estimates

The evolving metrics g; from a Monge-Ampeére flow satisfy uniform estimates:
There exist positive constants C and C;. such that

C™'.g<g < C-gand|VEilg < Cy.

We also have exponential convergence of the flow: There exist positive
constants Cj. and Ay such that

0
‘ avg@t‘g < Ckei)\kt.

These estimates were previously known for certain special cases like the
Kahler-Ricci flow (Cao, Phong-Sturm).
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Structures from the Octonions

Let O denote the normed division algebra of the octonions.
We have the commutator [-, -] and associator [-, -, -] on O:
[a,b] = ab — ba,

[a, b, c] = (ab)c — a(bc).
Using these forms, we can define a 3-form ¢ and a 4-form ¢ on Im O:

W(ar b, C) = <a7 [bv C]>:

N~ N =

Y(a,b,c,d) = =(a,[b, c,d]).

Additionally, we have an octonionic cross-product x on ImQ:

a x b= Im(ab).
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The Group Go

We can identify R7 with Im © and endow it with all the aforementioned
structures. Together, we get the standard G, structure on R7 which consists of:

® the standard Euclidean metric go:

e the standard orientation and standard volume form pg = el A ... A €7
associated to go, where el, ..., e7 is the standard ON basis;

® the associative 3-form ¢q;
® the coassociateive 4-form g;
® the octonionic cross-product xg.

One can check that ¢ = xgpo Where xq is the Hodge star induced from gg
Ond HO-

Definition
The group Gy is the subgroup of GL(R, 7) that preserves the standard Go
structure.
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The Group Go

It can be shown that gg. ¢o. and pg are related by

(adwo0) A (bawo) Ao = —6go(a, b)uo-

Convergence and Limits
0000000

From this, we get that ¢ determines go and o in a non-linear way and that the

group Go
Go = {A € GL(R,7) | A"po = o}
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Go Structures on Manifolds

Definition
A 3-form ¢ on a 7-manifold M is called a G, structure if for each p € M and
0#Yp e TpM,

(Yp 1p) A (Yp 1 p) App # 0.

Such a 3-form induces a metric gz and a Riemannian volume form vol; by the
relation

(Y 290) A(Z 1p0) A po = —6g7(a, b)voly.

In turn, we obtain a Hodge star 7 and dual 4-form ¢ = x7¢.

A 7-manifold M admits a G structure if and only if it is spinnable and orientable.
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The spaces of forms on M can be decomposed into irreducible Go
representations which will allow us to define the torsion forms.

Definition
Let o be a Gy structure. There are unique forms gy, 71, 72, and 73 called the
torsion forms such that

dy = 10Y + 371 A @ + 73,
dip =41 AN + *Tg.
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Types of Gy Structure

The torsion forms allow us to define 16 classes of Gy structure depending on
which of the torsion forms are zero or non-zero.

Definition
A Gy structure ¢ is:
® closed, if dep =0,
® coclosed, if dip =0,
e torsion-free if it is both closed and coclosed.

When ¢ is torsion-free, the Riemannian holonomy of the metric g7 is contained
in the group G and the metric g7 is Ricci-flat (Ferndndez-Gray).
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Laplacian Flow

Definition
A time-dependent Gy structure ¢; defined on some interval [0, T] satisfies the
Laplacian flow equation if

19}
—pt = A .
é)t(pt d; Pt

This flow was infroduced by Bryant.
The critical points of the Laplacian flow are forsion-free Gy structures.

Generally, we restrict our attention to closed Gy structures when studying the
Laplacian flow since in that case the closed condition is preserved.

Theorem (Bryant—Xu)

Let p be a closed Gy, structure on a compact 7-fold M. Then, the Laplacian
flow with initial condition ¢ has a unique solution for a short-fime [0, T| with T
depending on .

and Limits
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Laplacian Coflow

Definition
A time-dependent Gy structure ¢; on M defined on some interval [0, T] satisfies
the Laplacian coflow equation if

0
ad’t = Agq, Yt

This flow was first infroduced by Karigiannis—-McKay-Tsui (albeit with a minus
sign).

The critical points of the Laplacian coflow are torsion-free Gy structures.

Analogous to the Laplacian flow, we generally restrict our attention to coclosed
Gy, structures.

Unlike the Laplacian flow, short-time existence and uniqueness for the
Laplacian coflow is not known.
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Go, Structures from Calabi-Yau 2-Folds

Let (X4, w, T) be a Calabi-Yau 2-fold and choose:
® a nowhere-vanishing complex function F on X#,
® and a strictly positive function G on X%,

We can define a G, structure o on M7 = T2 x X* by setting
o =—Gdr' Adr? Adr® + dr! A Gw

+dr? ARe (%T) +dr AIm (%’I‘)

Here r1, r2, and r® denote the angle coordinates on T3.
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Go, Structures from Calabi-Yau 2-Folds

The associated metric and volume form are

g7 = 23|F|~3G2(dr")2 + 273 |F|3 (dr?)?

+273|F|3(dr®)? + 27 3|F| 3 ga,
and
—4 1 2 3

vol; =27 3|F|3Gdr" Adr® Adr® AVoly.

Lastly, we can compute the Hodge star and check that the dual 4-form ) is
1

P =—2"3|F5 . Swi+ 273 F|3dr? Adr® Aw

F
+ 25 |F|~3Gdr3 A dr! /\Re(

F
WT) +28 |8 Gar! Adr? Am ().
w

T
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Go, Structures from Calabi-Yau 3-Folds

We can do a similar thing on Calabi-Yau 3-folds. Let (X8, w, T) be a Calabi-Yau
3-fold and choose:

® a nowhere-vanishing complex function F on X8,
® and a strictly positive function G on X5,

We can define a G, structure ¢ on M7 = S x X8 by setting
F
¢=Re(——T") —dr A Guw,
(A ™)

where ris the angle coordinate on S!.

>nce and Limits
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Go, Structures from Calabi-Yau 3-Folds

The associated metric and volume form are
4 1 2
g7 = 4|F|73G*(dr)® + §|F\§96,

and 1
voly = 2 [F|3 Gdr! A dr® A dr3 A vols.

We can again compute the Hodge star check that the dual 4-form ) is

F 1 1
¥ = —2|F| 3 Gdr A Im (WT> - Z\F|% g
w
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Closed Gy, Structures

With an appropriate choice of the functions F and G, we can obtain closed Gy
structures on the product manifolds. In particular F = |T|,, and G = 1 yields the
forms

o=—drl Adr? Adr® +drt Aw+dr? ARe(T) +dr® AIm(T) on T3 x X*,

and
@ = Re(T) —dr Awon S' x X5.

Computing the Hodge Laplacians, we get
Agp =25 .7

L <2dr1 Aw—dr? ARe(Y) —drd A Im(T)) on T3 x X*,
3
V(gu(‘T‘w )

and
Agp=2-L 2)(—Re(T)—2dr/\w)onSI><X6.

V (96) (|T|;§
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The Torsion Forms

In both cases, we can compute the respect torsion forms of the Gy structures.
In particular, we have that

70 =0, 71 =0, 73 =0,

_2
7y =23 . (v(%)(mw 5 )) J [— 2dr! Aw+dr? ARe(Y) + dr® A Im(r)} on T3 x x4,

and
7—0:07 7—1:07 7—3:0,

o =2 (v(gs)(m;%)) 3 [Re(r) + 2dr/\w] on S! x X6.

The torsion forms vanish if and only if | Y|, is constant or equivalently when w is
Calabi-Yau.
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Evolution Equations

If we assume that the Laplacian flow preserves the ansatz, then we have the
evolution equation

5t ( —drt Adr? Adr® +dr! Awg+ dr? ARe(T¢) +dr® Alm (Tl)>
=2

ol

C L, (Zdrl Awi —dr? ARe () —dr® A Imm)) on T3 x X4,
v(g4)t (‘Tflwrs)

and

gt (Re(’I‘t) - dr/\wt) =2 LV(QG)[ (\Tt\;t%) <7 Re(Y¢) — 2dr/\wt) on S! x x8.

[dea

The angle coordinates are not affected by the Lie derivatives or time

derivatives. The terms involving wy and Y are similar in both cases so we can
tackle them simultaneously.
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Evolution Equations

Convergence and Limits
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If we assume that the Laplacian flow preserves the ansatz, then we have the
evolution equation

&<fdr1 Adr? Adr® + dr! A w4 dr? ARe () +dr3/\Im(Tl)>
=2

ol

L 3 (2dr1 Awi — dr? ARe(Yy) — dr® A Imm)) on T3 x X*,
Viga)e (‘Tflwr )
and

gt (Re(n) —drA wl) =2 LV(%)[ (m\;%) ( — Re (T — 2dr/\cu1) on s! x X6.

[dea

The angle coordinates are not affected by the Lie derivatives or time

derivatives. The terms involving wy and Y are similar in both cases so we can
tackle them simultaneously.
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Evolution Equations

Let hy denote the metric in either case.

Matching the w; and Y terms with each other, we are left with the following
evolution equations:

0
—wt =2K-L _ 2\ Wi,
ot i (1rds?)

—Tt=-K-L _2\ Ty,
ot Vht(\Tzlwts)

with K = 23 being a constant depending only on the dimension of the base
manifold.

Calabi-Yau structures satisfying the above equations will induce G, structures
that satisfy the Laplacian flow.

Remark
A priori, it is not clear that structures satisfying the above evolution equations
remain compatible as Calabi-Yau structures.

and Limits
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Evolution Equations

We can expand the Lie derivative ferms in the evolution equations. Working on
the first equation, we get

7] _ _2
— Wt =2K- 2\ Wt :4K-i8t8t(\Tt|wt3).

ot Evht (ITtlwl3>

This equation will be related to the MA3 flow.

The Lie derivative term in the second equation

0
—Yi=—-K-L _a\ Ty,
ot Vi (‘Ttlwls)

is in general not an (n, 0)-form with respect to the complex structure J;. This
implies that the complex structure must also evolve in time to preserve
compadtibility.

ldea

In order to address the compatibility conditions (and the fact that J; needs to
change), we can look for solutions by acting on compatible Calabi-Yau
structures via a moving family of diffeomorphisms. This idea is similar to that of
Fei-Phong-Picard-Zhang.
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A Solution from the MA3 Flow

Fix an initial Calabi-Yau structure (w, T) on a compact Calabi-Yau n-fold X.

The MA% flow then gives the existence of a solution u; to the equation

det i00 1 _
M)s, Wt i0Pw >0,  u=0.

0 —21
“uw =6K- og | T]w
atut (e det w

In turn, we get a family of K&hler metrics &y = w + i9du; which converge to the
Calabi-Yau metric wcy that also safisfy

o =0 o= _2
awt =6K - u‘)@aut =6K - 188(|T\@l) 3.
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A Solution from the MA3 Flow

Using the time-dependent K&hler metrics, we can define a vector field Y by

~2
Yi=-K- VEL(|T‘;,[3 )-

The vector field Y determines a 1-parameter family of diffeomorphisms such
that
o

&Qt(p) = Y:(8¢(p)), ©p = idy.

Using ©¢, we can pull our tensors back. The pullback structures
we=OfF, Y=0iT, J =01, h=06h,

remain compatible with one another as Calabi-Yau structures.
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A Solution from the MA3 Flow

Using DeTurck’s trick, we can show that wy and Y satisfy our desired evolution

equations.
o 0 17}
19 = 5y (07 = OF (Lx, @) + 7 (5,1)

_ _2
= Lig1),v,(O78) + 6] <6K - 100(7|5? ))

_ _2
-y 1 L wt+6K-i8t8t(9;‘(\T\g[3)>
—K-(6, )*[Vﬁl(l‘r‘gts ]
— _2
=—-K-L 2 wt+6K~i8t8t(|Tt\wL3):2K~£ 2 Wwt.
Ve (ITelw®) Vi (I Telw®)

Similarly, we can check that

o 8 .
a'rt at(@t T) = 6{(Ly,T)
= Loty (O = KL 3, Te

Vi (ITelw®)
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Summary

The structures (wt, Y'¢) satisfy the desired evolution equations

d

—wt =2K- L 2wt
at i (Ielw®)

9

= —K-r . T
ot Vi (I Telw®)

They are compatible as Calabi-Yau structures since they are obtained as
pullbacks of compatible structures.

Thus, their associated Go structures
o =—drt Adr? Adr® +drt Awr 4 dr? ARe(Ty) + drd AIm (1) on T3 x X*,

and
¢ = Re(Y;) —dr Aw,on S! x X6,

satisfy the Laplacian flow equation.

Unigueness of the Laplacian flow fells us that this solution is unique given the
initial condition.

and Limits
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Coclosed Gy Structures

Reversing our choices for F and G, we can obtain coclosed Gy, structures on
the product manifolds.

1
Y=-275. 2 127 5dr AdrP Aw
+25dr3 Adr! ARe(T) +28drl Adr® ATm(T) on T3 x X*,
and

11
1/}:72dr/\1m('r)71~§w2 on 8! x x8.

Computing the Hodge Laplacians, we get
2 —a 1o a4y 3
Agy =23 - Lv(g4)(log\T\w) (2 3. Ew —273dr s Adr° ANw
+28dr® Adr! ARe(T) +25dr! Adr? AIm (T)) on T3 x x4,
and

Agyp =2 - LV(%)(lOg [T]w) ( —2dr AIm (T) + w2> on S! x XG.

N
N
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The Torsion Forms

In both cases, we can compute the respect torsion forms of the Gy structures.
In particular, we have that

70 =0, 71 =0, T2 =0,
1
5 =25 (V<g4>(10glr\w)) N [2—% e 27 3dr? Adr® Aw
+25dr3 Adrl ARe(T) +25drl Adr? A Im(Y)] on T3 x X4,
and
70 =0, 71 =0, T2 =0,

w2] on S! x x8.

N
o~

T3=2- (V(ge)(log\TL,)) 4 [— 2dr A Im (Y) +

The torsion forms vanish if and only if | Y|, is constant or equivalently when w is
Calabi-Yau.
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Evolution Equations
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If we assume that the Laplacian coflow preserves the ansatz, then we have the
evolution equation
1o} _a 1 _4
a(—2 3 ~§wt2+2 3dr2 Adrd Awy
+ 23dr® Adr! ARe (Te) + 23dr! Adr? AIm (Yt)>
2 O N e S 3
=23 . £V(g4)L(10g ‘Tt‘wt) (2 3 - Ewl —273dre Adr° A wt

+28dr® Adr! ARe(T) +23drl Adr? A Imm)) on T3 x X4,

and
11 2)

C—wyi

2

8
a<72dr/\1m(’rt) 1
( 2dr A Im (1) +

?) on s! x x5,

-M»—'
mw

=2 Ly (og Tilw,)
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Evolution Equations

Under the assumption that the ansatz is preserved, we have the evolution
equation
s} a1 _a
&(_2 3. gwl+273d? ndr® A
+ 23dr® A dr! ARe (Te) + 23dr! Adr? AIm (Tt)>
2 _a 1, —4 9 3
=23 . Ev(g4)t(10g"rt|wt) (2 3 - iwl —273dr° AN dr N\ we

+28drd A dr! ARe(Ty) +28dr! A dr? Mm(n)) on T3 x X4,

and

b 11,
a<72dr/\lm('rl)f 1 th)

=2 Ev(gs)t(bg 1T elwy) ( —2dr ANIm(Y¢) +

1
wa) on s! x x5,

N
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Evolution Equations

Matching terms again, we get:

it = K Loy og el wts

)
7t Lt = K- Lo ogrelu) Tt

with K = 23.

Calabi-Yau structures satisfying the above equations will induce G, structures
that satisfy the Laplacian coflow.

Remark

As before, it is not clear that structures satisfying the above evolution equations
remain compatible as Calabi-Yau structures.
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Go Structures
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Evolution Equations

Working with the Lie derivative terms in the evolution equations, we get
9 AR .
&wt =-K- ,tht (log |Tt‘wt)wt =—-2K- Latat(log ‘TtL,_,t) =—-K- RIC(wt,Jt).

This is reminiscent of the K&hlerRicci flow.

In the second equation,

7]

7t Lt =K Ly, qog 1w Tt

is again in general not an (n, 0)-form and so the complex structure J; has to
change with fime.

ldea
We can again look for solutions by acting on compatible Calabi-Yau structures
via a moving family of diffeomorphisms.
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A Solution from the K&hler-Ricci Flow
Fix an initial Calabi-Yau structure (w, T) on a compact Calabi-Yau n-fold X,

The (rescaled) Kahler—Ricci flow then gives the existence of a family of K&hler
metrics w; which converge to the Calabi-Yau metric wey that also satisfy

0

50t = —2K-Ric@,J),  @o=w.

The Kahler metrics define a time-dependent vector field Y by

Yt =K- Vﬁt(log ‘TL:,[)

We in turn obtain a 1-parameter family of diffeomorphisms such that

S 6dp) = YiOup), o =idx.

We then define the pullback structures

we=0fw, Ti=Orr, J;=6’, h=6nh.

and Limits
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A Solutfion from the KdhlerRicci Flow

Using DeTurck’s trick, we can show that wy and T satisfy our desired evolution

equations.
a 6 * ~ * ~ * a ~
awt = &(Qt wt) = ®t (ﬁylwt) =+ @t (&wt)
= Lig-1). v, (07@0) + 6] ( ~2K- Ric(wt,J))

= Lr (07 1) (95, log 151 < — 2K RIC(O760, O7)

=K- Evht(log [T¢]w )Wt — 2K - Ric(w¢, Ji) = —K - £Vht (log T ¢lw, ) WE-

Similarly, we can check that

0 0

— Y= —(O;Y) =07f T

gi 1t~ 5O = €Ly )
= E(@;I)*Yt(@?n = K'Evhlﬂongz\wt)Ttv
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Summary
The structures (w¢, Y¢) satisfy the desired evolution equations

it = K Loy tog 1wt

)
ae 1=K Ly, og1ilwp Te-

They are compatible as Calabi-Yau structures since they are obtained as
pullbacks of compatible structures.

It follows that the associated Go structures
p=-275. %wz +273d AdrP Aw
+ 23dr® A dr! A Re(T) + 23dr! Adr? AIm (T) on T3 x X4,
and

11
= —2dr AIm(Y) — 1 §w2 on S! x x°

satisfy the Laplacian coflow equation.

nd Limits
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The Story So Far

We have found a family of solutions to the Laplacian flow and coflow in ferms
of Calabi-Yau structures on the base manifold.

In all cases, we have:
¢ The flow is solved by a pair (wt, Tt) = (0F@¢, ©F ),
® The time-dependent family of K&hler triples (&, J, ﬁt) come from a
Monge-Ampére flow,
® The Kahler metrics @; satisfy uniform estimates and exponential
convergence condifions. They also converge to the Calabi-Yau metric wey
in the Kahler class [w] in each Ck(X, h)-norm,

® The diffeomorphisms ©; solve %@t = Y;, where Y; is a time-dependent
vector field defined using derivatives of (powers and logarithms of) the
norm |Y|g,.

With these ingredients, we will prove convergence of the structures (w¢, T¢) and
their associated Gy structures (borrowing ideas from Lotay-Wei).
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The Limit Diffeomorphism
Recall that Y; was defined either by
2
Yi = —K-Vj (IT]g,|73) or Ye = K- V5, (log [Tg,]),

and that the Calabi-Yau metric wey has the property that the norm | 1., is
constant.

It follows that the vector field Y; converges to 0 exponentially fast in each
Ck(X, h) norm and so there exist positive constant Cy., A such that

|VEYilh < Cree e,
Given a point p € X, and t;, t > 0, we can define a smooth path « from ©, (p)

fo Oy, (p) by
v(t) = ©¢(p)-

We then see that

to o ty ty it
(4 (). €4 () < [ [ S 01(p)] dt < [ ¥ilnde < G [ e ota,
t ot h t t

and so the maps ©; converge uniformly with respect to h.

The other uniform estimates show that the ©, converge in each C*(X, h)-norm
and so we have some limit map O.
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The Limit Diffeomorphism
Next, for each t, we have

525 Gl = 5 (os 057 = [y e (017 D)

ot TAT TAYT TATY) 8t
" T) |2 vol
=[or () < |(Ppa™)|
[Ye(I 72|, d(Ye JVO' < e,
- 73 ) VO )

[t follows that

TeATe T AT t
‘log( t t /‘ - S))dsﬁ/e_)‘sdsgc
T/\T 85 T/\T 0

is uniformly bounded.

This gives another uniform estimate
CL.(TAT) SO} (TAT)SC-(TAT),
and so the pullbacks ©F are uniformly non-degenerate.

We get that det(©}) is uniformly bounded and this estimate can be passed to
the limit O
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The Limit Diffeomorphism

The map O is a local diffeomorphism by the Inverse Function Theorem.

Each ©; is also a diffeomorphism isotopic to the identity, and so © is surjective
and homotopic to the identity.

Since X is compact, © is a covering map. As O is homotopic to the identity,
it has degree 1 and is injective.

Thus O is a bijective local diffeomorphism and hence a diffeomorphism.

It follows that (w¢, T¢) converge to (0% wey, %5, T) as t — oo.
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Limiting Go Structures
We can apply this to the Laplacian flow of the associated G» structures.

Theorem (Picard-S.)
Start the Laplacian flow with initial data
o=—drAdr? Adr®+dr' Aw+ dr? ARe(T) 4 drP AIm(T) on T3 x X*,
or
¢ =Re(Y)—drAworS' x x5,
Then the Laplacian flow exists for all time t and is given by the I\/IA% flow (up fo
diffeomorphism) and converges to a stationary point
Yoo = —dr Adr? Adr® + dr' A ©F wey
+dr? ARe(©%, 1) +dr3 AIm (0%, 1) on T3 x x*

or
Yoo = Re(©2,T) — dr A©* wey on S! x X6,

where O is a diffeomorphism on the base and wcy is the unique Ricci-flat
Kdhler metric in the class [w].
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Limiting Go Structures
We have the analogous result for the Laplacian coflow.

Theorem (Picard-S.)
Start the Laplacian coflow with initial data
b=—27%. %w2+2_% cdrP AdrP Aw
125 .dr® Adr! ARe(T) +25 - dr! Adr? AIm(T) on T3 x X*
or 11
¥ ==2-drAIm(T) - - 5w2 on St x x8.
Then the Laplacian coflow exists for all time t and is given by the Kahler-Ricci
flow (up to diffeomorphism) and converges to a stationary point

oo = —2-3 Lor 2 1ot ar aaP Aot w
oo = 9 co*CY coWCY

+25 . dr3 Adr! ARe(©5,T) +23 - drl Adr2 AIm(©75,T) on T3 x X4
or

11
oo = —2 - dr AIm (©%,Y) — 1 EG;W%Y on s! x x8,

where O is a diffeomorphism on the base and wcy is the unique Ricci-flat
Kdahler metric in the class [w].



ThGnk you.

<o <Fr o«
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