G<sub>2</sub> Structures A

ssociated Structures

Laplacian Flow 0000000000 Laplacian Coflow

Convergence and Limits 0000000

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

UC-Irvine Generalized Ricci Flow Learning Seminar

# Flows of $G_2$ Structures Associated to Calabi–Yau Manifolds

Caleb Suan

The University of British Columbia

Dec 5, 2023

tures Asso

ssociated Structures

Laplacian Flow

Laplacian Coflow

Convergence and Limits 0000000



#### Goal

Establish a correspondence between the Laplacian flow and coflow on torus bundles over Calabi–Yau 2- and 3-folds with Monge–Ampère flows on the base.

This is joint work with Sébastien Picard.



Associated St 0000 Laplacian Flow

Laplacian Coflow

Convergence and Limits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Main Results

#### Theorem (Picard-S.)

Start the Laplacian flow with initial data

$$arphi = -dr \wedge dr^2 \wedge dr^3 + dr^1 \wedge \omega + dr^2 \wedge Re\left(\Upsilon
ight) + dr^3 \wedge Im\left(\Upsilon
ight)$$
 on  $T^3 imes X^4$ 

or

$$arphi = \operatorname{Re}\left(\Upsilon\right) - \operatorname{dr}\wedge\omega \text{ or } \mathbf{S}^{1}\times X^{6}.$$

Then the Laplacian flow exists for all time t and is given by the  $MA^{\frac{1}{3}}$  flow (up to diffeomorphism) and converges to a stationary point

$$\begin{split} \varphi_{\infty} &= -dr \wedge dr^2 \wedge dr^3 + dr^1 \wedge \Theta_{\infty}^* \omega_{CY} \\ &+ dr^2 \wedge Re\left(\Theta_{\infty}^* \Upsilon\right) + dr^3 \wedge Im\left(\Theta_{\infty}^* \Upsilon\right) \text{ on } T^3 \times X^4 \end{split}$$

or

$$arphi_{\infty}= Re\left( \Theta^*_{\infty} \Upsilon 
ight) - dr \wedge \Theta^*_{\infty} \omega_{CY}$$
 on  $S^1 imes X^6,$ 

where  $\Theta_{\infty}$  is a diffeomorphism on the base and  $\omega_{CY}$  is the unique Ricci-flat Kähler metric in the class  $[\omega]$ .

ures Associate

ssociated Structures

Laplacian Flow

Laplacian Coflow

Convergence and Limits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Main Results

## Theorem (Picard–S.)

Start the Laplacian coflow with initial data

$$\begin{split} \psi &= -2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega^2 + 2^{-\frac{4}{3}} \cdot dr^2 \wedge dr^3 \wedge \omega \\ &+ 2^{\frac{2}{3}} \cdot dr^3 \wedge dr^1 \wedge Re\left(\Upsilon\right) + 2^{\frac{2}{3}} \cdot dr^1 \wedge dr^2 \wedge Im\left(\Upsilon\right) \text{ on } T^3 \times X^4 \end{split}$$

or

$$\psi = -2 \cdot dr \wedge Im\left(\Upsilon\right) - rac{1}{4} \cdot rac{1}{2} \omega^2 ext{ on } S^1 imes X^6.$$

Then the Laplacian coflow exists for all time t and is given by the Kähler–Ricci flow (up to diffeomorphism) and converges to a stationary point

$$\begin{split} \psi_{\infty} &= -2^{-\frac{4}{3}} \cdot \frac{1}{2} \Theta_{\infty}^{*} \omega_{CY}^{2} + 2^{-\frac{4}{3}} \cdot dr^{2} \wedge dr^{3} \wedge \Theta_{\infty}^{*} \omega_{CY} \\ &+ 2^{\frac{2}{3}} \cdot dr^{3} \wedge dr^{1} \wedge \operatorname{Re}\left(\Theta_{\infty}^{*} \Upsilon\right) + 2^{\frac{2}{3}} \cdot dr^{1} \wedge dr^{2} \wedge \operatorname{Im}\left(\Theta_{\infty}^{*} \Upsilon\right) \text{ on } T^{3} \times X^{4} \end{split}$$

or

$$\psi_{\infty} = -2 \cdot dr \wedge \operatorname{I\!m}\left( \Theta_{\infty}^{*} \Upsilon \right) - \frac{1}{4} \cdot \frac{1}{2} \Theta_{\infty}^{*} \omega_{CY}^{2} \text{ on } S^{1} \times X^{6},$$

where  $\Theta_{\infty}$  is a diffeomorphism on the base and  $\omega_{CY}$  is the unique Ricci-flat Kähler metric in the class  $[\omega]$ .



res Associo

es Laplacio 00000 Laplacian Coflow

Convergence and Limits

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

## Table of Contents

Calabi-Yau Manifolds

G<sub>2</sub> Structures

G2 Structures from Calabi–Yau Manifolds

Laplacian Flow

Laplacian Coflow

Convergence and Limits

s Associate

Structures L

aplacian Flow

Laplacian Coflow

Convergence and Limits 0000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Calabi–Yau Manifolds

### Definition

A (Kähler) Calabi–Yau n-fold X is a complex manifold with dimension n (and real dimension 2n) admitting:

- a Kähler metric  $\omega$ ,
- and a nowhere vanishing holomorphic (n, 0)-form  $\Upsilon$ .

Throughout, we will refer to the pair  $(\omega, \Upsilon)$  as a (Kähler) Calabi–Yau structure.

A Calabi-Yau manifold has the following properties:

- the canonical bundle  $K_X$  is trivial,
- the first Chern class  $c_1(X)$  vanishes,
- the Ricci-form  $\operatorname{Ric}(\omega, J)$  is given by  $2i\partial\overline{\partial}(\log |\Upsilon|_{\omega})$  and it vanishes if and only if  $|\Upsilon|_{\omega}$  is constant.

Associated:

Laplacian Fla

Laplacian Coflow

Convergence and Limits

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

## Yau's Theorem

## Theorem (Yau)

Let  $(X, \omega)$  be a compact Kähler manifold with  $c_1(X) = 0$  and let  $F \colon X \to \mathbb{R}$  be a function such that

$$\int_X e^F \omega^n = \int_X \omega^n.$$

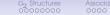
Then there is a smooth function  $u\colon X\to \mathbb{R},$  unique up to the addition of a constant, such that

$$\omega + i\partial\overline{\partial}u > 0$$
 and  $(\omega + i\partial\overline{\partial}u)^n = e^F\omega^n$ .

Yau's theorem implies the existence of a Ricci-flat Kähler metric in the cohomology class  $[\omega]$ .

This metric is unique in its Kähler class. When X is a Calabi–Yau manifold, we denote it by  $\omega_{CY}$  and refer to it as a Calabi–Yau metric.

Yau's theorem and its proof involved the solving of complex Monge-Ampère equations, which have since been studied extensively.



ssociated Structures

Laplacian Flow

Laplacian Coflow

Convergence and Limits

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

## Monge-Ampère Flows

On a compact Kähler manifold, there is a class of flows of Kähler metrics that are related to complex Monge-Ampère equations.

## Theorem (Picard-Zhang)

Let  $(X, \omega)$  be a compact Kähler manifold. Let  $a: X \to \mathbb{R}$  be a function and let  $H: \mathbb{R}^+ \to \mathbb{R}$  be a smooth function with H' > 0. Then there exists a solution  $u_t$  to the parabolic complex Monge–Ampère equation

$$\frac{\partial}{\partial t}u_t = H\Big(e^{-\alpha}\frac{\det(\omega+i\partial\overline{\partial}u_t)}{\det\omega}\Big), \qquad \omega+i\partial\overline{\partial}u_t > 0, \qquad u_0 = 0.$$

This solution exists for all time t. Moreover, the metrics  $\tilde{\omega}_t = \omega + i\partial \overline{\partial} u_t$  converge in each  $C^k(X,g)$ -norm to a limiting metric  $\omega' \in [\omega]$ .

When X is a Calabi–Yau manifold, the limiting metric is the Calabi–Yau metric  $\omega_{CY}.$ 



## Monge-Ampère Flows

Certain choices of the functions a and H give familiar special cases:

- Kähler–Ricci flow ( $H(\rho) = \log \rho$ ),
- Anomaly flow  $(H(\rho) = \rho)$ .

We have two particular cases of importance:

• MA
$$^{\frac{1}{3}}$$
 flow ( $a = 2 \log |\Upsilon|_{\omega}$ ,  $H = 6K \rho^{\frac{1}{3}}$ ):

$$\frac{\partial}{\partial t}u_t = 6K \Big( e^{-2\log|\Upsilon|_{\omega}} \frac{\det(\omega+i\partial\overline{\partial}u_t)}{\det\omega} \Big)^{\frac{1}{3}},$$

• Kähler–Ricci flow ( $a=2\log|\Upsilon|_{\omega}$  ,  $H=2K\log
ho$ ):

$$\frac{\partial}{\partial t}u_t = 2K\log\Big(\frac{\det(\omega + i\partial\overline{\partial}u_t)}{\det\omega}\Big) - 2K\log|\Upsilon|^2_\omega.$$



## **Uniform Estimates**

The evolving metrics  $\tilde{g}_t$  from a Monge–Ampère flow satisfy uniform estimates: There exist positive constants C and  $C_k$  such that

$$C^{-1} \cdot g \leq \widetilde{g}_t \leq C \cdot g$$
 and  $|\nabla_q^k \widetilde{\omega}_t|_g \leq C_k$ .

We also have exponential convergence of the flow: There exist positive constants  $C_k$  and  $\lambda_k$  such that

$$\left|\frac{\partial}{\partial t}\nabla_g^k \widetilde{\omega}_t\right|_g \leq C_k e^{-\lambda_k t}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

These estimates were previously known for certain special cases like the Kähler–Ricci flow (Cao, Phong–Sturm).

ifolds G2 Structures

Associated Structure

Laplacian Flow

Laplacian Coflow

Convergence and Limits

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Structures from the Octonions

Let  $\ensuremath{\mathbb O}$  denote the normed division algebra of the octonions.

We have the commutator  $[\cdot,\cdot]$  and associator  $[\cdot,\cdot,\cdot]$  on  $\mathbb{O}:$ 

[a, b] = ab - ba,[a, b, c] = (ab)c - a(bc).

Using these forms, we can define a 3-form  $\varphi$  and a 4-form  $\psi$  on  $\operatorname{Im} \mathbb{O}$ :

$$arphi(a,b,c) = rac{1}{2} \langle a, [b,c] 
angle, 
onumber \ \psi(a,b,c,d) = rac{1}{2} \langle a, [b,c,d] 
angle$$

Additionally, we have an octonionic cross-product  $\times$  on  $Im \mathbb{O}$ :

 $a \times b = Im(ab).$ 



We can identify  $\mathbb{R}^7$  with  $Im \mathbb{O}$  and endow it with all the aforementioned structures. Together, we get the standard  $G_2$  structure on  $\mathbb{R}^7$  which consists of:

- the standard Euclidean metric  $g_0$ ;
- the standard orientation and standard volume form  $\mu_0 = e^1 \land \ldots \land e^7$  associated to  $g_0$ , where  $e^1, \ldots, e^7$  is the standard ON basis;
- the associative 3-form  $\varphi_0$ ;
- the coassociateive 4-form  $\psi_0$ ;
- the octonionic cross-product  $\times_0$ .

One can check that  $\psi_0 = \star_0 \varphi_0$  where  $\star_0$  is the Hodge star induced from  $g_0$  and  $\mu_0$ .

## Definition

The group  $G_2$  is the subgroup of  $GL(\mathbb{R},7)$  that preserves the standard  $G_2$  structure.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~



## The Group $G_2$

It can be shown that  $g_0, \varphi_0$ , and  $\mu_0$  are related by

$$(a \,\lrcorner\, \varphi_0) \land (b \,\lrcorner\, \varphi_0) \land \varphi_0 = -6g_0(a, b)\mu_0.$$

From this, we get that  $\varphi_0$  determines  $g_0$  and  $\mu_0$  in a non-linear way and that the group  $G_2$ 

$$G_2 = \{ A \in GL(\mathbb{R}, 7) \mid A^* \varphi_0 = \varphi_0 \}.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ



Laplacian Coflow

Convergence and Limits

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## G<sub>2</sub> Structures on Manifolds

#### Definition

A 3-form  $\varphi$  on a 7-manifold M is called a  $G_2$  structure if for each  $p \in M$  and  $0 \neq Y_p \in T_pM$ ,

 $(Y_p \,\lrcorner\, \varphi_p) \land (Y_p \,\lrcorner\, \varphi_p) \land \varphi_p \neq 0.$ 

Such a 3-form induces a metric  $g_7$  and a Riemannian volume form  $\mathrm{vol}_7$  by the relation

$$(Y \,\lrcorner\, \varphi_0) \land (Z \,\lrcorner\, \varphi_0) \land \varphi_0 = -6g_7(a, b) \mathrm{Vol}_7.$$

In turn, we obtain a Hodge star  $\star_7$  and dual 4-form  $\psi = \star_7 \varphi$ .

A 7-manifold M admits a  $G_2$  structure if and only if it is spinnable and orientable.



The spaces of forms on M can be decomposed into irreducible  $G_2$  representations which will allow us to define the torsion forms.

#### Definition

Let  $\varphi$  be a  $G_2$  structure. There are unique forms  $\tau_0$ ,  $\tau_1$ ,  $\tau_2$ , and  $\tau_3$  called the torsion forms such that

 $d\varphi = au_0\psi + 3 au_1 \wedge \varphi + \star au_3,$  $d\psi = 4 au_1 \wedge \psi + \star au_2.$ 

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ



## Types of $G_2$ Structure

The torsion forms allow us to define 16 classes of  $G_2$  structure depending on which of the torsion forms are zero or non-zero.

#### Definition

A  $G_2$  structure  $\varphi$  is:

- closed, if  $d\varphi = 0$ ,
- coclosed, if  $d\psi = 0$ ,
- torsion-free if it is both closed and coclosed.

When  $\varphi$  is torsion-free, the Riemannian holonomy of the metric  $g_7$  is contained in the group  $G_2$  and the metric  $g_7$  is Ricci-flat (Fernández–Gray).



## Laplacian Flow

#### Definition

A time-dependent  ${\rm G}_2$  structure  $\varphi_t$  defined on some interval [0,T] satisfies the Laplacian flow equation if

$$\frac{\partial}{\partial t}\varphi_t = \Delta_{d_t}\varphi_t.$$

This flow was introduced by Bryant.

The critical points of the Laplacian flow are torsion-free  $G_2$  structures.

Generally, we restrict our attention to closed  $G_2$  structures when studying the Laplacian flow since in that case the closed condition is preserved.

#### Theorem (Bryant–Xu)

Let  $\varphi$  be a closed G<sub>2</sub> structure on a compact 7-fold M. Then, the Laplacian flow with initial condition  $\varphi$  has a unique solution for a short-time [0, T] with T depending on  $\varphi$ .



## Laplacian Coflow

#### Definition

A time-dependent  $G_2$  structure  $\varphi_t$  on M defined on some interval [0,T] satisfies the Laplacian coflow equation if

$$\frac{\partial}{\partial t}\psi_t = \Delta_{d_t}\psi_t.$$

This flow was first introduced by Karigiannis–McKay–Tsui (albeit with a minus sign).

The critical points of the Laplacian coflow are torsion-free  $G_2$  structures.

Analogous to the Laplacian flow, we generally restrict our attention to coclosed  $G_2$  structures.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Unlike the Laplacian flow, short-time existence and uniqueness for the Laplacian coflow is not known.



## G<sub>2</sub> Structures from Calabi–Yau 2-Folds

Let  $(X^4, \omega, \Upsilon)$  be a Calabi–Yau 2-fold and choose:

- a nowhere-vanishing complex function F on  $X^4$ ,
- and a strictly positive function G on  $X^4$ .

We can define a  $G_2$  structure  $\varphi$  on  $M^7 = T^3 \times X^4$  by setting

$$egin{aligned} arphi &= -G dr^1 \wedge dr^2 \wedge dr^3 + dr^1 \wedge G \omega \ &+ dr^2 \wedge Re\left(rac{F}{|\Upsilon|_\omega} \Upsilon
ight) + dr^3 \wedge Im\left(rac{F}{|\Upsilon|_\omega} \Upsilon
ight). \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Here  $r^1$ ,  $r^2$ , and  $r^3$  denote the angle coordinates on  $T^3$ .



## G<sub>2</sub> Structures from Calabi–Yau 2-Folds

The associated metric and volume form are

$$\begin{split} g_7 &= 2^{\frac{4}{3}} |F|^{-\frac{4}{3}} G^2 (dr^1)^2 + 2^{-\frac{2}{3}} |F|^{\frac{2}{3}} (dr^2)^2 \\ &\quad + 2^{-\frac{2}{3}} |F|^{\frac{2}{3}} (dr^3)^2 + 2^{-\frac{2}{3}} |F|^{\frac{2}{3}} g_4, \end{split}$$

and

$$\operatorname{VOl}_7 = 2^{-rac{4}{3}} |F|^{rac{4}{3}} G dr^1 \wedge dr^2 \wedge dr^3 \wedge \operatorname{VOl}_4.$$

Lastly, we can compute the Hodge star and check that the dual 4-form  $\psi$  is

$$egin{aligned} \psi &= -2^{-rac{4}{3}}|F|^{rac{4}{3}}\cdotrac{1}{2}\omega^2+2^{-rac{4}{3}}|F|^{rac{4}{3}}dr^2\wedge dr^3\wedge\omega \ &+2^{rac{2}{3}}|F|^{-rac{2}{3}}Gdr^3\wedge dr^1\wedge Re\left(rac{F}{|\Upsilon|_\omega}\Upsilon
ight)+2^{rac{2}{3}}|F|^{-rac{2}{3}}Gdr^1\wedge dr^2\wedge Im\left(rac{F}{|\Upsilon|_\omega}\Upsilon
ight). \end{aligned}$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○ ○



## G<sub>2</sub> Structures from Calabi–Yau 3-Folds

We can do a similar thing on Calabi–Yau 3-folds. Let  $(X^6,\omega,\Upsilon)$  be a Calabi–Yau 3-fold and choose:

- a nowhere-vanishing complex function F on  $X^6$ ,
- and a strictly positive function G on  $X^6$ .

We can define a  $G_2$  structure arphi on  $M^7=S^1 imes X^6$  by setting

$$arphi = Re\left(rac{F}{|\Upsilon|_\omega}\Upsilon
ight) - dr \wedge G\omega,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

where r is the angle coordinate on  $S^1$ .



## G<sub>2</sub> Structures from Calabi–Yau 3-Folds

The associated metric and volume form are

$$g_7 = 4|F|^{-rac{4}{3}}G^2(dr)^2 + rac{1}{2}|F|^{rac{2}{3}}g_6,$$

and

$$\operatorname{VOl}_7 = rac{1}{4} |F|^rac{4}{3} G dr^1 \wedge dr^2 \wedge dr^3 \wedge \operatorname{VOl}_6.$$

We can again compute the Hodge star check that the dual 4-form  $\psi$  is

$$\psi = -2|F|^{-rac{2}{3}} \textit{Gdr} \wedge \textit{Im}\left(rac{F}{|\Upsilon|_{\omega}}\Upsilon
ight) - rac{1}{4}|F|^{rac{4}{3}} \cdot rac{1}{2}\omega^2.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ



## Closed $G_2$ Structures

With an appropriate choice of the functions F and G, we can obtain closed  $G_2$  structures on the product manifolds. In particular  $F = |\Upsilon|_{\omega}$  and G = 1 yields the forms

$$arphi = -dr^1 \wedge dr^2 \wedge dr^3 + dr^1 \wedge \omega + dr^2 \wedge Re\left(\Upsilon\right) + dr^3 \wedge Im\left(\Upsilon\right) ext{ on } T^3 imes X^4,$$

and

$$\varphi = Re(\Upsilon) - dr \wedge \omega$$
 on  $S^1 \times X^6$ .

Computing the Hodge Laplacians, we get

$$\Delta_{d}\varphi = 2^{\frac{2}{3}} \cdot \mathcal{L}_{\nabla_{\left(g_{4}\right)}\left(\left|\Upsilon\right|_{\omega}^{-\frac{2}{3}}\right)}\left(2dr^{1}\wedge\omega - dr^{2}\wedge \operatorname{Re}\left(\Upsilon\right) - dr^{3}\wedge\operatorname{Im}\left(\Upsilon\right)\right) \text{ on } T^{3}\times X^{4},$$

and

$$\Delta_{d}\varphi = 2 \cdot \mathcal{L}_{\nabla_{(g_{6})}\left(|\Upsilon|_{\omega}^{-\frac{2}{3}}\right)}\left(-\operatorname{Re}\left(\Upsilon\right) - 2dr \wedge \omega\right) \text{ on } S^{1} \times X^{6}.$$



In both cases, we can compute the respect torsion forms of the  $G_2$  structures. In particular, we have that

$$\begin{aligned} \tau_0 &= 0, \qquad \tau_1 = 0, \qquad \tau_3 = 0, \\ \tau_2 &= 2^{\frac{2}{3}} \cdot \left( \nabla_{(g_4)}(|\Upsilon|_{\omega}^{-\frac{2}{3}}) \right) \,\lrcorner \left[ -2dr^1 \wedge \omega + dr^2 \wedge \operatorname{Re}\left(\Upsilon\right) + dr^3 \wedge \operatorname{Im}\left(\Upsilon\right) \right] \, \mathrm{on} \, T^3 \times X^4, \end{aligned}$$

and

$$\begin{split} \tau_0 &= 0, \qquad \tau_1 = 0, \qquad \tau_3 = 0, \\ \tau_2 &= 2 \cdot \left( \nabla_{(g_6)} (|\Upsilon|_{\omega}^{-\frac{2}{3}}) \right) \,\lrcorner \left[ Re\left(\Upsilon\right) + 2dr \wedge \omega \right] \, \text{on} \, S^1 \times X^6. \end{split}$$

The torsion forms vanish if and only if  $|\Upsilon|_{\omega}$  is constant or equivalently when  $\omega$  is Calabi–Yau.



If we assume that the Laplacian flow preserves the ansatz, then we have the evolution equation

$$\begin{split} &\frac{\partial}{\partial t}\Big(-dr^{1}\wedge dr^{2}\wedge dr^{3}+dr^{1}\wedge \omega_{t}+dr^{2}\wedge Re\left(\Upsilon_{t}\right)+dr^{3}\wedge Im\left(\Upsilon_{t}\right)\Big)\\ &=2^{\frac{2}{3}}\cdot\mathcal{L}_{\nabla\left(g_{4}\right)_{t}}\left(\left|\Upsilon_{t}\right|_{\omega_{t}}^{-\frac{2}{3}}\right)\Big(2dr^{1}\wedge \omega_{t}-dr^{2}\wedge Re\left(\Upsilon_{t}\right)-dr^{3}\wedge Im\left(\Upsilon_{t}\right)\Big) \text{ on }T^{3}\times X^{4}, \end{split}$$

and

$$\frac{\partial}{\partial t} \Big( Re(\Upsilon_t) - dr \wedge \omega_t \Big) = 2 \cdot \mathcal{L}_{\nabla_{(g_6)_t} \left( |\Upsilon_t|_{\omega_t}^{-\frac{2}{3}} \right)} \Big( - Re(\Upsilon_t) - 2dr \wedge \omega_t \Big) \text{ on } S^1 \times X^6.$$

#### Idea

The angle coordinates are not affected by the Lie derivatives or time derivatives. The terms involving  $\omega_t$  and  $\Upsilon_t$  are similar in both cases so we can tackle them simultaneously.



If we assume that the Laplacian flow preserves the ansatz, then we have the evolution equation

$$\begin{split} &\frac{\partial}{\partial t}\Big(-dr^{1}\wedge dr^{2}\wedge dr^{3}+dr^{1}\wedge \omega_{t}+dr^{2}\wedge Re\left(\Upsilon_{t}\right)+dr^{3}\wedge Im\left(\Upsilon_{t}\right)\Big)\\ &=2^{\frac{2}{3}}\cdot\mathcal{L}_{\nabla(g_{4})_{t}}\Big(|\Upsilon_{t}|_{\omega_{t}}^{-\frac{2}{3}}\Big)\Big(2dr^{1}\wedge \omega_{t}-dr^{2}\wedge Re\left(\Upsilon_{t}\right)-dr^{3}\wedge Im\left(\Upsilon_{t}\right)\Big) \text{ on }T^{3}\times X^{4}, \end{split}$$

and

$$\frac{\partial}{\partial t} \left( Re(\Upsilon_t) - dr \wedge \omega_t \right) = 2 \cdot \mathcal{L}_{\nabla_{(g_6)_t} \left( |\Upsilon_t|_{\omega_t}^{-\frac{2}{3}} \right)} \left( - Re(\Upsilon_t) - 2dr \wedge \omega_t \right) \text{ on } S^1 \times X^6.$$

#### Idea

The angle coordinates are not affected by the Lie derivatives or time derivatives. The terms involving  $\omega_t$  and  $\Upsilon_t$  are similar in both cases so we can tackle them simultaneously.



Let  $h_t$  denote the metric in either case.

Matching the  $\omega_t$  and  $\Upsilon_t$  terms with each other, we are left with the following evolution equations:

$$\begin{split} & \frac{\partial}{\partial t} \omega_t = 2K \cdot \mathcal{L}_{\nabla_{h_t} \left( |\Upsilon_t|_{\omega_t}^{-\frac{2}{3}} \right)} \omega_t, \\ & \frac{\partial}{\partial t} \Upsilon_t = -K \cdot \mathcal{L}_{\nabla_{h_t} \left( |\Upsilon_t|_{\omega_t}^{-\frac{2}{3}} \right)} \Upsilon_t, \end{split}$$

with  $K = 2^{\frac{\pi}{3}}$  being a constant depending only on the dimension of the base manifold.

Calabi–Yau structures satisfying the above equations will induce  $G_2$  structures that satisfy the Laplacian flow.

#### Remark

A priori, it is not clear that structures satisfying the above evolution equations remain compatible as Calabi–Yau structures.

Laplacian Flow

We can expand the Lie derivative terms in the evolution equations. Working on the first equation, we get

$$\frac{\partial}{\partial t}\omega_t = \mathbf{2}K\cdot\mathcal{L}_{\nabla_{h_t}\left(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}}\right)}\omega_t = \mathbf{4}K\cdot i\partial_t\overline{\partial}_t(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}}).$$

This equation will be related to the  $MA^{\frac{1}{3}}$  flow.

The Lie derivative term in the second equation

$$\frac{\partial}{\partial t}\Upsilon_t = -K\cdot\mathcal{L}_{\nabla h_t\left(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}}\right)}\Upsilon_t,$$

is in general not an (n, 0)-form with respect to the complex structure  $J_t$ . This implies that the complex structure must also evolve in time to preserve compatibility.

#### Idea

In order to address the compatibility conditions (and the fact that  $J_t$  needs to change), we can look for solutions by acting on compatible Calabi–Yau structures via a moving family of diffeomorphisms. This idea is similar to that of Fei–Phong–Picard–Zhang.



Fix an initial Calabi–Yau structure  $(\omega, \Upsilon)$  on a compact Calabi–Yau *n*-fold *X*.

The MA $^{\frac{1}{3}}$  flow then gives the existence of a solution  $u_t$  to the equation

$$\frac{\partial}{\partial t}u_t = 6K \cdot \left(e^{-2\log|\Upsilon|_{\omega}} \frac{\det(\omega + i\partial\overline{\partial}u_t)}{\det\omega}\right)^{\frac{1}{3}}, \qquad \omega + i\partial\overline{\partial}u_t > 0, \qquad u_0 = 0.$$

In turn, we get a family of Kähler metrics  $\tilde{\omega}_t = \omega + i\partial\overline{\partial}u_t$  which converge to the Calabi–Yau metric  $\omega_{CY}$  that also satisfy

$$\frac{\partial}{\partial t}\widetilde{\omega}_t = 6K \cdot i\partial\overline{\partial} \frac{\partial}{\partial t} u_t = 6K \cdot i\partial\overline{\partial} (|\Upsilon|_{\widetilde{\omega}_t})^{-\frac{2}{3}}.$$



Using the time-dependent Kähler metrics, we can define a vector field Y by

$$Y_t = -K \cdot \nabla_{\widetilde{h}_t}(|\Upsilon|_{\widetilde{\omega}_t}^{-\frac{2}{3}}).$$

The vector field Y determines a 1-parameter family of diffeomorphisms such that

$$\frac{\partial}{\partial t}\Theta_t(p) = Y_t(\Theta_t(p)), \qquad \Theta_0 = \mathrm{id}_X.$$

Using  $\Theta_t$ , we can pull our tensors back. The pullback structures

$$\omega_t = \Theta_t^* \widetilde{\omega}_t, \qquad \Upsilon_t = \Theta_t^* \Upsilon, \qquad J_t = \Theta_t^* J, \qquad h_t = \Theta_t^* \widetilde{h}_t,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

remain compatible with one another as Calabi-Yau structures.



Using DeTurck's trick, we can show that  $\omega_t$  and  $\Upsilon_t$  satisfy our desired evolution equations.

$$\begin{split} \frac{\partial}{\partial t}\omega_t &= \frac{\partial}{\partial t}(\Theta_t^*\widetilde{\omega}_t) = \Theta_t^*(\mathcal{L}_{Y_t}\widetilde{\omega}_t) + \Theta_t^*\left(\frac{\partial}{\partial t}\widetilde{\omega}_t\right) \\ &= \mathcal{L}_{(\Theta_t^{-1})_*Y_t}(\Theta_t^*\widetilde{\omega}_t) + \Theta_t^*\left(6K \cdot i\partial\overline{\partial}(|\Upsilon|_{\widetilde{\omega}_t}^{-\frac{2}{3}})\right) \\ &= \mathcal{L}_{-K \cdot (\Theta_t^{-1})_*[\nabla_{\overline{h}_t}(|\Upsilon|_{\widetilde{\omega}_t}^{-\frac{2}{3}})]} \omega_t + 6K \cdot i\partial_t\overline{\partial}_t\left(\Theta_t^*(|\Upsilon|_{\widetilde{\omega}_t}^{-\frac{2}{3}})\right) \\ &= -K \cdot \mathcal{L}_{\nabla_{h_t}(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}})} \omega_t + 6K \cdot i\partial_t\overline{\partial}_t(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}}) = 2K \cdot \mathcal{L}_{\nabla_{h_t}(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}})} \omega_t. \end{split}$$

Similarly, we can check that

$$\begin{split} \frac{\partial}{\partial t} \Upsilon_t &= \frac{\partial}{\partial t} (\Theta_t^* \Upsilon) = \Theta_t^* (\mathcal{L}_{Y_t} \Upsilon) \\ &= \mathcal{L}_{(\Theta_t^{-1})_* Y_t} (\Theta_t^* \Upsilon) = -K \cdot \mathcal{L}_{\nabla_{h_t} (|\Upsilon_t|_{\omega_t}^{-2})} \Upsilon_t, \end{split}$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

G<sub>2</sub> Structures Associated

ciated Structures

Laplacian Flow

Laplacian Coflow

Convergence and Limits

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Summary

The structures  $(\omega_t, \Upsilon_t)$  satisfy the desired evolution equations

$$\begin{split} & \frac{\partial}{\partial t}\omega_t = 2K\cdot\mathcal{L}_{\nabla_{h_t}(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}})}\omega_t \\ & \frac{\partial}{\partial t}\Upsilon_t = -K\cdot\mathcal{L}_{\nabla_{h_t}(|\Upsilon_t|_{\omega_t}^{-\frac{2}{3}})}\Upsilon_t. \end{split}$$

They are compatible as Calabi–Yau structures since they are obtained as pullbacks of compatible structures.

Thus, their associated  $G_2$  structures

$$\varphi = -dr^{1} \wedge dr^{2} \wedge dr^{3} + dr^{1} \wedge \omega_{t} + dr^{2} \wedge Re\left(\Upsilon_{t}\right) + dr^{3} \wedge Im\left(\Upsilon_{t}\right) \text{ on } T^{3} \times X^{4},$$

and

$$\varphi = Re(\Upsilon_t) - dr \wedge \omega_t \text{ on } S^1 \times X^6.$$

satisfy the Laplacian flow equation.

Uniqueness of the Laplacian flow tells us that this solution is unique given the initial condition.

Coclosed  $G_2$  Structures

Laplacian Coflow

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Reversing our choices for F and G, we can obtain coclosed  $G_2$  structures on the product manifolds.

$$\begin{split} \psi &= -2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega^2 + 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega \\ &+ 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon\right) \text{ on } T^3 \times X^4, \end{split}$$

and

 $G_2$  Structures

$$\psi = -2dr \wedge Im\left(\Upsilon
ight) - rac{1}{4} \cdot rac{1}{2}\omega^2 ext{ on } S^1 imes X^6.$$

Computing the Hodge Laplacians, we get

$$\begin{split} \Delta_{d}\psi &= 2^{\frac{2}{3}} \cdot \mathcal{L}_{\nabla_{\left(g_{4}\right)}\left(\log|\Upsilon|_{\omega}\right)} \Big(2^{-\frac{4}{3}} \cdot \frac{1}{2}\omega^{2} - 2^{-\frac{4}{3}}dr^{2} \wedge dr^{3} \wedge \omega \\ &+ 2^{\frac{2}{3}}dr^{3} \wedge dr^{1} \wedge \operatorname{Re}\left(\Upsilon\right) + 2^{\frac{2}{3}}dr^{1} \wedge dr^{2} \wedge \operatorname{Im}\left(\Upsilon\right)\Big) \text{ on } T^{3} \times X^{4}, \end{split}$$

and

$$\Delta_{d}\psi = 2 \cdot \mathcal{L}_{\nabla_{(g_{6})}(\log|\Upsilon|_{\omega})} \Big( - 2dr \wedge \mathit{Im}\,(\Upsilon) + \frac{1}{4} \cdot \frac{1}{2}\omega^{2} \Big) \text{ on } S^{1} \times X^{6}.$$



## In both cases, we can compute the respect torsion forms of the $G_2$ structures. In particular, we have that

$$\begin{split} \tau_0 &= 0, \qquad \tau_1 = 0, \qquad \tau_2 = 0, \\ \tau_3 &= 2^{\frac{2}{3}} \cdot \left( \nabla_{(g_4)} (\log |\Upsilon|_{\omega}) \right) \,\lrcorner \left[ 2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega^2 - 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega \right. \\ &\qquad \qquad + 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon\right) \right] \text{ on } T^3 \times X^4, \end{split}$$

and

$$\begin{split} \tau_0 &= 0, \qquad \tau_1 = 0, \qquad \tau_2 = 0, \\ \tau_3 &= 2 \cdot \left( \nabla_{(g_6)} (\log |\Upsilon|_{\omega}) \right) \,\lrcorner \left[ -2dr \wedge \operatorname{Im}\left(\Upsilon\right) + \frac{1}{4} \cdot \frac{1}{2} \omega^2 \right] \, \text{on} \, S^1 \times X^6. \end{split}$$

The torsion forms vanish if and only if  $|\Upsilon|_{\omega}$  is constant or equivalently when  $\omega$  is Calabi–Yau.

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



If we assume that the Laplacian coflow preserves the ansatz, then we have the evolution equation

$$\begin{split} &\frac{\partial}{\partial t} \Big( -2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega_t^2 + 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega_t \\ &+ 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon_t\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon_t\right) \Big) \\ &= 2^{\frac{2}{3}} \cdot \mathcal{L}_{\nabla_{\left(g_4\right)_t}\left(\log|\Upsilon_t|_{\omega_t}\right)} \Big( 2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega_t^2 - 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega_t \\ &+ 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon_t\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon_t\right) \Big) \text{ on } T^3 \times X^4, \end{split}$$

and

$$\begin{split} & \frac{\partial}{\partial t} \Big( - 2 dr \wedge \operatorname{Im}\left(\Upsilon_t\right) - \frac{1}{4} \cdot \frac{1}{2} \omega_t^2 \Big) \\ &= 2 \cdot \mathcal{L}_{\nabla_{\left(g_6\right)_t}\left(\log|\Upsilon_t|_{\omega_t}\right)} \Big( - 2 dr \wedge \operatorname{Im}\left(\Upsilon_t\right) + \frac{1}{4} \cdot \frac{1}{2} \omega_t^2 \Big) \text{ on } S^1 \times X^6. \end{split}$$

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



Under the assumption that the ansatz is preserved, we have the evolution equation

$$\begin{split} &\frac{\partial}{\partial t} \Big( -2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega_t^2 + 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega_t \\ &+ 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon_t\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon_t\right) \Big) \\ &= 2^{\frac{2}{3}} \cdot \mathcal{L}_{\nabla(g_4)_t}(\log|\Upsilon_t|_{\omega_t}) \Big( 2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega_t^2 - 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega_t \\ &+ 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon_t\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon_t\right) \Big) \text{ on } T^3 \times X^4, \end{split}$$

and

$$\begin{split} &\frac{\partial}{\partial t}\Big(-2dr\wedge \operatorname{Im}\left(\Upsilon_t\right)-\frac{1}{4}\cdot\frac{1}{2}\omega_t^2\Big)\\ &=2\cdot\mathcal{L}_{\nabla_{\left(g_6\right)_t}\left(\log|\Upsilon_t|_{\omega_t}\right)}\Big(-2dr\wedge \operatorname{Im}\left(\Upsilon_t\right)+\frac{1}{4}\cdot\frac{1}{2}\omega_t^2\Big) \text{ on }S^1\times X^6. \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



### **Evolution Equations**

Matching terms again, we get:

$$\begin{split} &\frac{\partial}{\partial t}\omega_t = -K\cdot\mathcal{L}_{\nabla_{h_t}(\log|\Upsilon_t|_{\omega_t})}\omega_t,\\ &\frac{\partial}{\partial t}\Upsilon_t = K\cdot\mathcal{L}_{\nabla_{h_t}(\log|\Upsilon_t|_{\omega_t})}\Upsilon_t, \end{split}$$

with  $K = 2^{\frac{n}{3}}$ .

Calabi–Yau structures satisfying the above equations will induce  $G_2$  structures that satisfy the Laplacian coflow.

#### Remark

As before, it is not clear that structures satisfying the above evolution equations remain compatible as Calabi–Yau structures.

▲□▶▲□▶▲□▶▲□▶ □ のQ@



#### **Evolution Equations**

Working with the Lie derivative terms in the evolution equations, we get

$$\frac{\partial}{\partial t}\omega_t = -K \cdot \mathcal{L}_{\nabla_{h_t}(\log|\Upsilon_t|_{\omega_t})}\omega_t = -2K \cdot i\partial_t\overline{\partial}_t(\log|\Upsilon_t|_{\omega_t}) = -K \cdot \mathsf{Ric}(\omega_t, J_t).$$

This is reminiscent of the Kähler-Ricci flow.

In the second equation,

$$\frac{\partial}{\partial t}\Upsilon_t = K \cdot \mathcal{L}_{\nabla_{h_t}(\log|\Upsilon_t|_{\omega_t})}\Upsilon_t,$$

is again in general not an (n, 0)-form and so the complex structure  $J_t$  has to change with time.

#### Idea

We can again look for solutions by acting on compatible Calabi–Yau structures via a moving family of diffeomorphisms.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

sociated Structures

Laplacian Flow

Laplacian Coflow

Convergence and Limits

## A Solution from the Kähler–Ricci Flow

Fix an initial Calabi–Yau structure  $(\omega, \Upsilon)$  on a compact Calabi–Yau *n*-fold *X*.

The (rescaled) Kähler–Ricci flow then gives the existence of a family of Kähler metrics  $\tilde{\omega}_t$  which converge to the Calabi–Yau metric  $\omega_{CY}$  that also satisfy

$$\frac{\partial}{\partial t}\widetilde{\omega}_t = -2K \cdot \operatorname{Ric}(\widetilde{\omega}_t, J), \qquad \widetilde{\omega}_0 = \omega.$$

The Kähler metrics define a time-dependent vector field Y by

$$Y_t = K \cdot \nabla_{\widetilde{h}_t} (\log |\Upsilon|_{\widetilde{\omega}_t}).$$

We in turn obtain a 1-parameter family of diffeomorphisms such that

$$\frac{\partial}{\partial t}\Theta_t(p) = Y_t(\Theta_t(p)), \qquad \Theta_0 = \mathrm{id}_X.$$

We then define the pullback structures

$$\omega_t = \Theta_t^* \widetilde{\omega}_t, \qquad \Upsilon_t = \Theta_t^* \Upsilon, \qquad J_t = \Theta_t^* J, \qquad h_t = \Theta_t^* \widetilde{h}_t.$$



### A Solution from the Kähler–Ricci Flow

Using DeTurck's trick, we can show that  $\omega_t$  and  $\Upsilon_t$  satisfy our desired evolution equations.

$$\begin{split} \frac{\partial}{\partial t} \omega_t &= \frac{\partial}{\partial t} (\Theta_t^* \widetilde{\omega}_t) = \Theta_t^* (\mathcal{L}_{Y_t} \widetilde{\omega}_t) + \Theta_t^* \Big( \frac{\partial}{\partial t} \widetilde{\omega}_t \Big) \\ &= \mathcal{L}_{(\Theta_t^{-1})_* Y_t} (\Theta_t^* \widetilde{\omega}_t) + \Theta_t^* \Big( - 2K \cdot \operatorname{Ric}(\widetilde{\omega}_t, J) \Big) \\ &= \mathcal{L}_{K \cdot (\Theta_t^{-1})_* [\nabla_{\widetilde{h}_t} (\log |\Upsilon_t|_{\widetilde{\omega}_t})]} \omega_t - 2K \cdot \operatorname{Ric}(\Theta_t^* \widetilde{\omega}_t, \Theta_t^* J) \\ &= K \cdot \mathcal{L}_{\nabla h_t} (\log |\Upsilon_t|_{\omega_t}) \omega_t - 2K \cdot \operatorname{Ric}(\omega_t, J_t) = -K \cdot \mathcal{L}_{\nabla h_t} (\log |\Upsilon_t|_{\omega_t}) \omega_t. \end{split}$$

Similarly, we can check that

$$\begin{split} \frac{\partial}{\partial t} \Upsilon_t &= \frac{\partial}{\partial t} (\Theta_t^* \Upsilon) = \Theta_t^* (\mathcal{L}_{Y_t} \Upsilon) \\ &= \mathcal{L}_{(\Theta_t^{-1})_* Y_t} (\Theta_t^* \Upsilon) = K \cdot \mathcal{L}_{\nabla h_t} (\log |\Upsilon_t|_{\omega_t}) \Upsilon_t, \end{split}$$

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○ ○

CY Manifolds 20000 Associated S

uctures Lapl

Iplacian Flow

Laplacian Coflow

Convergence and Limits

▲□▶▲□▶▲□▶▲□▶ □ のQ@

## Summary

The structures  $(\omega_t, \Upsilon_t)$  satisfy the desired evolution equations

$$\begin{split} &\frac{\partial}{\partial t}\omega_t = -K\cdot\mathcal{L}_{\nabla h_t}(\log|\Upsilon_t|_{\omega_t})\omega_t\\ &\frac{\partial}{\partial t}\Upsilon_t = K\cdot\mathcal{L}_{\nabla h_t}(\log|\Upsilon_t|_{\omega_t})\Upsilon_t. \end{split}$$

They are compatible as Calabi–Yau structures since they are obtained as pullbacks of compatible structures.

It follows that the associated  $G_2$  structures

$$\begin{split} \psi &= -2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega^2 + 2^{-\frac{4}{3}} dr^2 \wedge dr^3 \wedge \omega \\ &+ 2^{\frac{2}{3}} dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon\right) + 2^{\frac{2}{3}} dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon\right) \text{ on } T^3 \times X^4, \end{split}$$

and

$$\psi = -2 dr \wedge Im(\Upsilon) - rac{1}{4} \cdot rac{1}{2} \omega^2 ext{ on } extsf{S}^1 imes X^6$$

satisfy the Laplacian coflow equation.



## The Story So Far

We have found a family of solutions to the Laplacian flow and coflow in terms of Calabi–Yau structures on the base manifold.

In all cases, we have:

- The flow is solved by a pair  $(\omega_t, \Upsilon_t) = (\Theta_t^* \widetilde{\omega}_t, \Theta_t^* \Upsilon)$ ,
- The time-dependent family of Kähler triples  $(\widetilde{\omega}_t,J,\widetilde{h}_t)$  come from a Monge–Ampère flow,
- The Kähler metrics  $\tilde{\omega}_t$  satisfy uniform estimates and exponential convergence conditions. They also converge to the Calabi–Yau metric  $\omega_{CY}$  in the Kähler class  $[\omega]$  in each  $C^k(X, h)$ -norm,
- The diffeomorphisms  $\Theta_t$  solve  $\frac{\partial}{\partial t}\Theta_t = Y_t$ , where  $Y_t$  is a time-dependent vector field defined using derivatives of (powers and logarithms of) the norm  $|\Upsilon|_{\widetilde{\omega}_t}$ .

With these ingredients, we will prove convergence of the structures  $(\omega_t, \Upsilon_t)$  and their associated  $G_2$  structures (borrowing ideas from Lotay–Wei).



G<sub>2</sub> Structures Associat

ssociated Structures

Laplacian Flow

Laplacian Coflow

Convergence and Limits 000000

# The Limit Diffeomorphism

Recall that  $Y_t$  was defined either by

$$Y_t = -K \cdot \nabla_{\widetilde{h}_t}(|\Upsilon|_{\widetilde{\omega}_t}|^{-\frac{2}{3}}) \text{ or } Y_t = K \cdot \nabla_{\widetilde{h}_t}(\log|\Upsilon|_{\widetilde{\omega}_t}|),$$

and that the Calabi–Yau metric  $\omega_{CY}$  has the property that the norm  $|\Upsilon|_{\omega_{CY}}$  is constant.

It follows that the vector field  $Y_t$  converges to 0 exponentially fast in each  $C^k(X,h)$  norm and so there exist positive constant  $C_k, \lambda_k$  such that

$$|\nabla_h^k Y_t|_h \le C_k e^{-\lambda_k t}.$$

Given a point  $p \in X$ , and  $t_1, t_2 \ge 0$ , we can define a smooth path  $\gamma$  from  $\Theta_{t_1}(p)$  to  $\Theta_{t_2}(p)$  by

$$\gamma(t) = \Theta_t(p).$$

We then see that

$$d_h(\Theta_{t_1}(p),\Theta_{t_2}(p)) \leq \int_{t_1}^{t_2} \Big| \frac{\partial}{\partial t} \Theta_t(p) \Big|_h dt \leq \int_{t_1}^{t_2} |Y_t|_h dt \leq C_0 \int_{t_1}^{t_2} e^{-\lambda_0 t} dt,$$

and so the maps  $\Theta_t$  converge uniformly with respect to h.

The other uniform estimates show that the  $\Theta_t$  converge in each  $C^k(X, h)$ -norm and so we have some limit map  $\Theta_{\infty}$ .

#### 0000 00

Laplacian Flow

Laplacian Coflow

Convergence and Limits

# The Limit Diffeomorphism

Next, for each t, we have

G<sub>2</sub> Structures

$$\begin{split} \left| \frac{\partial}{\partial t} \log \left( \frac{\Upsilon_t \wedge \overline{\Upsilon}_t}{\Upsilon \wedge \overline{\Upsilon}} \right) \right| &= \left| \frac{\partial}{\partial t} \Big( \log \frac{\Theta_t^*(\Upsilon \wedge \overline{\Upsilon})}{\Upsilon \wedge \overline{\Upsilon}} \Big) \Big| = \left| \frac{1}{\Theta_t^*(\Upsilon \wedge \overline{\Upsilon})} \frac{\partial}{\partial t} \Big( \Theta_t^*(\Upsilon \wedge \overline{\Upsilon}) \Big) \right| \\ &= \left| \Theta_t^* \Big( \frac{\mathcal{L}_{Y_t}(\Upsilon \wedge \overline{\Upsilon})}{\Upsilon \wedge \overline{\Upsilon}} \Big) \Big| \le \sup_X \left| \Big( \frac{\mathcal{L}_{Y_t}(|\Upsilon|^2_\omega \text{vol})}{|\Upsilon|^2_\omega \text{vol}} \Big) \right| \\ &\le \frac{|Y_t(|\Upsilon|^2_\omega)|}{|\Upsilon|^2_\omega} + \left| \frac{d(Y_t \sqcup \text{vol})}{\text{vol}} \right| \le Ce^{-\lambda t}. \end{split}$$

It follows that

$$\Big|\log\Big(\frac{\Upsilon_t\wedge\overline{\Upsilon_t}}{\Upsilon\wedge\overline{\Upsilon}}\Big)\Big|\leq\int_0^t\Big|\frac{\partial}{\partial s}\log\Big(\frac{\Upsilon_s\wedge\overline{\Upsilon}_s}{\Upsilon\wedge\overline{\Upsilon}}\Big)\Big|ds\leq\int_0^t e^{-\lambda s}ds\leq C$$

is uniformly bounded.

This gives another uniform estimate

$$C^{-1} \cdot (\Upsilon \wedge \overline{\Upsilon}) \leq \Theta_t^* (\Upsilon \wedge \overline{\Upsilon}) \leq C \cdot (\Upsilon \wedge \overline{\Upsilon}),$$

and so the pullbacks  $\Theta_t^*$  are uniformly non-degenerate.

We get that  $\det(\Theta_t^*)$  is uniformly bounded and this estimate can be passed to the limit  $\Theta_{\infty}$ .



### The Limit Diffeomorphism

The map  $\Theta_{\infty}$  is a local diffeomorphism by the Inverse Function Theorem.

Each  $\Theta_t$  is also a diffeomorphism isotopic to the identity, and so  $\Theta_\infty$  is surjective and homotopic to the identity.

Since X is compact,  $\Theta_{\infty}$  is a covering map. As  $\Theta_{\infty}$  is homotopic to the identity, it has degree 1 and is injective.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Thus  $\Theta_{\infty}$  is a bijective local diffeomorphism and hence a diffeomorphism.

It follows that  $(\omega_t, \Upsilon_t)$  converge to  $(\Theta_{\infty}^* \omega_{CY}, \Theta_{\infty}^* \Upsilon)$  as  $t \to \infty$ .

# Limiting G<sub>2</sub> Structures

Convergence and Limits

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We can apply this to the Laplacian flow of the associated  $G_2$  structures.

#### Theorem (Picard–S.)

Start the Laplacian flow with initial data

$$arphi = -dr \wedge dr^2 \wedge dr^3 + dr^1 \wedge \omega + dr^2 \wedge Re\left(\Upsilon\right) + dr^3 \wedge Im\left(\Upsilon\right) ext{ on } T^3 imes X^4,$$

or

$$\varphi = \operatorname{Re}\left(\Upsilon\right) - \operatorname{dr}\wedge\omega \text{ or } \mathbf{S}^1 \times X^6.$$

Then the Laplacian flow exists for all time t and is given by the  $MA^{\frac{1}{3}}$  flow (up to diffeomorphism) and converges to a stationary point

$$\begin{split} \varphi_{\infty} &= -dr \wedge dr^2 \wedge dr^3 + dr^1 \wedge \Theta_{\infty}^* \omega_{CY} \\ &+ dr^2 \wedge Re\left(\Theta_{\infty}^* \Upsilon\right) + dr^3 \wedge Im\left(\Theta_{\infty}^* \Upsilon\right) \text{ on } T^3 \times X^4 \end{split}$$

or

$$\varphi_{\infty} = \operatorname{Re}\left(\Theta_{\infty}^{*}\Upsilon\right) - \operatorname{dr} \wedge \Theta_{\infty}^{*}\omega_{CY} \text{ on } S^{1} \times X^{6},$$

where  $\Theta_{\infty}$  is a diffeomorphism on the base and  $\omega_{CY}$  is the unique Ricci-flat Kähler metric in the class  $[\omega]$ .

## Limiting $G_2$ Structures

Convergence and Limits

We have the analogous result for the Laplacian coflow.

#### Theorem (Picard-S.)

Start the Laplacian coflow with initial data

$$\begin{split} \psi &= -2^{-\frac{4}{3}} \cdot \frac{1}{2} \omega^2 + 2^{-\frac{4}{3}} \cdot dr^2 \wedge dr^3 \wedge \omega \\ &+ 2^{\frac{2}{3}} \cdot dr^3 \wedge dr^1 \wedge \operatorname{Re}\left(\Upsilon\right) + 2^{\frac{2}{3}} \cdot dr^1 \wedge dr^2 \wedge \operatorname{Im}\left(\Upsilon\right) \text{ on } T^3 \times X^4 \end{split}$$

or

$$\psi = -2 \cdot dr \wedge Im(\Upsilon) - rac{1}{4} \cdot rac{1}{2} \omega^2 ext{ on } S^1 imes X^6.$$

Then the Laplacian coflow exists for all time t and is given by the Kähler–Ricci flow (up to diffeomorphism) and converges to a stationary point

$$\begin{split} \psi_{\infty} &= -2^{-\frac{4}{3}} \cdot \frac{1}{2} \Theta_{\infty}^{*} \omega_{CY}^{2} + 2^{-\frac{4}{3}} \cdot dr^{2} \wedge dr^{3} \wedge \Theta_{\infty}^{*} \omega_{CY} \\ &+ 2^{\frac{2}{3}} \cdot dr^{3} \wedge dr^{1} \wedge \operatorname{Re}\left(\Theta_{\infty}^{*} \Upsilon\right) + 2^{\frac{2}{3}} \cdot dr^{1} \wedge dr^{2} \wedge \operatorname{Im}\left(\Theta_{\infty}^{*} \Upsilon\right) \text{ on } T^{3} \times X^{4} \end{split}$$

or

$$\psi_{\infty} = -2 \cdot dr \wedge \mathit{Im}\,(\Theta_{\infty}^{*}\,\Upsilon) - \frac{1}{4} \cdot \frac{1}{2} \Theta_{\infty}^{*} \omega_{CY}^{2} \, \text{on} \, S^{1} \times X^{6},$$

where  $\Theta_{\infty}$  is a diffeomorphism on the base and  $\omega_{CY}$  is the unique Ricci-flat Kähler metric in the class  $[\omega]$ .

CY Manifolds 00000 G2 Structures Associ

Associated Structures

Laplacian How

Laplacian Coflow

Convergence and Limits 000000●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thank you.