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Abstract

In this thesis, we study three problems in non-Kähler Calabi–Yau geom-
etry and G2-geometry centered on Reid’s Fantasy [Rei87] and the Hull–
Strominger system [Hul86, Str86].

The first concerns the geometrization of conifold transitions, processes which
allow us to traverse the moduli space of compact Calabi–Yau threefolds.
Work of Fu–Li–Yau [FLY12] and of Collins–Picard–Yau [CPY24] has con-
structed metrics on both sides of this process which are partial solutions to
the Hull–Strominger system. Using these (conformally) balanced and Her-
mitian Yang–Mills metrics, we show that conifold transitions are continuous
in the Gromov–Hausdorff topology.

The next focuses on the Anomaly flow of Phong–Picard–Zhang [PPZ18b].
We extend their ideas from the α′ = 0 case and compute integral Shi-
type estimates along the flow for general slope parameter α′. We achieve
this by adapting an integration-by-parts type argument instead of the usual
Maximum Principle techniques in order to deal with the extra terms that
appear. From this, we obtain a smallness condition on α′ that allows the
flow to be extended from [0, τ) to a larger interval [0, τ + ϵ).

Finally, we study the relationship between Calabi–Yau geometry and G2-
geometry by considering geometric flows on S1-fibrations over Calabi–Yau
threefolds. In particular, we construct families of closed and coclosed G2-
structures on these fibrations and apply the Laplacian flow and (modified)
coflow respectively. Using these Ansätze, we show that on a trivial fibration
these flows reduce to particular Monge–Ampère flows on the base manifold.
We perform a similar analysis on contact Calabi–Yau 7-folds and obtain
conditions for these families to satisfy the flows.

iii



Lay Summary

This thesis studies several problems related to the Hull–Strominger system
– a system of equations from heterotic string theory that provide supersym-
metric conditions on a manifold.

First, we show that a certain type of deformation – called a conifold transi-
tion – is continuous when using special structures from the Hull–Strominger
system, despite passing through an intermediate space with singularities.

Next, study the long-time behaviour of the Anomaly flow – a geometric
method of finding solutions to the system. In particular, we prove a small-
ness condition on a parameter α′ which allows us to extend the flow further.

Finally, we consider the relationship between SU(3)- and G2-structures,
which respectively come from special geometries in 6 and 7 dimensions. We
do this by deforming G2-structures and noting their effect on the underlying
SU(3)-structures.
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Non-Kähler Calabi–Yau
Geometry
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Chapter 1

Introduction

We begin with an introduction on non-Kähler Calabi–Yau geometry, spe-
cializing quickly to the complex dimension 3 setting.

1.1 Calabi–Yau Manifolds

Definition 1.1.1. A Calabi–Yau n-fold X is a compact complex manifold
of complex dimension n with finite fundamental group and trivial canonical
bundle.

In general, we do not require that a Calabi–Yau manifold admit a Kähler
metric and will explicitly state when one is assumed to exist.

SinceX has trivial canonical bundle, we have that there exists some nowhere-
vanishing holomorphic (n, 0)-form Υ on X. Given a Hermitian metric ω on
X, we can write the norm of Υ with respect to ω by the local formula

∥Υ∥2ω =
|f |2

det gpq
. (1.1)

Here

ω =
√
−1gjkdz

j ∧ dzk (1.2)

and

Υ = fdz1 ∧ . . . ∧ dzn. (1.3)

where f is a local holomorphic function.

We will sometimes refer to a pair (ω,Υ) as a SU(3)-structure.

If ω is a Ricci-flat Kähler metric, then the norm ∥Υ∥ω is constant. Using
the complex structure J , we also have a Riemannian metric g related to ω
by ω(Y, Z) = g(JY, Z) (see Appendix D for more details on this relation).
We will often use g and ω interchangeably to denote the Kähler form/metric
structure on X.

2



1.2. Conifold Transitions

1.2 Conifold Transitions

An important process in non-Kähler Calabi–Yau geometry is that of a coni-
fold transition. This deforms one Calabi–Yau threefold X̂ into a family of
others via a blowdown followed by a smoothing, while passing through an
intermediate singular space.

1.2.1 Local Models

We first look at conifold transitions by studying how they act on their local
models. Consider the total space of the bundle

V̂ = O(−1)⊕O(−1) → P1. (1.4)

Using the usual coordinate charts for P1, we have two trivializations for the
space V̂ :

(U, (λ, u, v)) and (U ′, (λ′, u′, v′)), (1.5)

where λ and λ′ are coordinates on the base P1 and u, v, u′, and v′ are fiber
coordinates. The transition functions for these charts are

λ′ = λ−1, u′ = λu, v′ = λv. (1.6)

This space can be regarded as a small blowup of the singular space

V0 =
{
z ∈ C4 |

4∑
j=1

z2j = 0
}
. (1.7)

This can be seen by the holomorphic (scaled) blowdown map π : V̂ → V0
given explicitly by

π(λ, u, v) =
(λv + u√

2
,
−
√
−1(λv − u)√

2
,
−
√
−1(v + λu)√

2
,
−(v − λu)√

2

)
. (1.8)

From this expression, we can see that π−1(0) is the zero section E ≃ P1 of
the bundle V̂ . Away from the ordinary double point (ODP) singularity at
the origin, we have

π−1(z1, z2, z3, z4)

=
(√−1(z3 −

√
−1z4)

z1 −
√
−1z2

,
z1 −

√
−1z2√
2

,

√
−1(z3 +

√
−1z4)√

2

)
, (1.9)

3



1.2. Conifold Transitions

which shows that the restriction π
V̂ \E is biholomorphic.

The space V0 can be check to be closed under addition and scalar multipli-
cation and is hence a cone [0,∞) × L. The link L of this cone is S2 × S3.
To see this, we write zj = xj +

√
−1yj to rewrite the defining condition as

0 = ∥x∥2 − ∥y∥2 + 2
√
−1⟨x, y⟩ (1.10)

where x, y ∈ R4. Checking real and imaginary parts, we must have

∥x∥2 = ∥y∥2 and ⟨x, y⟩ = 0. (1.11)

Consider the set where ∥z∥2 = 2 and so ∥x∥2 = ∥y∥2 = 1. We must have
that x ∈ S3 ⊆ R4. For each choice of x, the above conditions imply that y
must be in the unit 2-sphere centered at 0 ∈ TxS

3. It follows that the set
{z ∈ V0 | ∥z∥2 = 2} is diffeomorphic to the unit sphere bundle contained in
the tangent bundle TS3, which is trivial. Rescaling, we see that L ≃ S2×S3.

The singular space V0 can be smoothed out to the spaces

Vt =
{
z ∈ C4 |

4∑
j=1

z2j = t
}
. (1.12)

This is achieved by considering the maps Φt : C4 \ {0} → C4 defined by

Φt(z) = z +
tz

2∥z∥2
, (1.13)

where ∥ · ∥ is the usual norm on C4. Routine computations (see Appendix
B) show that indeed Φt : V0 \ {0} → Vt and that the restriction

Φt :
{
z ∈ V0 | ∥z∥2 >

|t|
2

}
→ {z ∈ Vt | ∥z∥2 > |t|} (1.14)

is a diffeomorphism. We note that the condition defining Vt implies that
∥z∥2 ≥ |t| and so the image of the restriction only excludes the set {z ∈ Vt |
∥z∥2 = |t|}.

The excluded set can be shown to be a scaled S3. Indeed, using the same
notation as we did when checking L ≃ S2 × S3 and supposing that t > 0,
we get that

∑
j z

2
j = t implies that

∥x∥2 − ∥y∥2 = t, ⟨x, y⟩ = 0. (1.15)

4



1.2. Conifold Transitions

The second condition
∑

j ∥zj∥2 = |t| then gives

∥x∥2 + ∥y∥2 = t. (1.16)

It follows that ∥x∥2 = 2t and y = 0 as desired. We can obtain the result for
other values of t by rotating these appropriately. As such, we refer to this
set as the vanishing sphere.

X̂

π

X0

Φt

Xt

Figure 1.1: A conifold transition contracts (−1,−1)-curves on X̂ to points
on X0 and smooths them out to 3-spheres on Xt.

1.2.2 Global Processes and Friedman’s Condition

The local blowdown and smoothing process described above is what we
would like to globalize. As such, we require a special type of curve.

Definition 1.2.1. A (−1,−1)-curve E ⊆ X̂ is a smooth rational complex
curve E ≃ P1 such that the normal bundle N

E\X̂ ≃ O(−1)⊕O(−1).

Given disjoint (−1,−1)-curves Ej ⊆ X̂, we have disjoint open neighbour-

hoods Ûj ⊇ Ej that are biholomorphic to neighbourhoods of the zero section

of the bundle V̂ = O(−1)⊕O(−1) → P1. This allows us to apply the local
process and obtain a blowdown map π : X̂ → X0, where X0 is a singular
space with isolated singular points at sj = π(Ej). In order to ensure that
our local processes work globally, we require a homological condition given
by R. Friedman.

Theorem 1.2.2 (R. Friedman [Fri86, Fri91]). Let X̂ be a Calabi–Yau three-
fold and let E1, . . . , Ek ⊆ X̂ be disjoint (−1,−1)-curves. Let π be the blow-
down map that contracts each Ej, resulting in the singular space X0 with

5



1.2. Conifold Transitions

ODP singularities sj = π(Ej). There exists a first-order deformation of X0

smoothing each sj if and only if there exists a relation∑
j

λj [Ej ] = 0 in H2(X̂,R) (1.17)

with each λj ̸= 0.

It has been shown that if the
√
−1∂∂-Lemma holds on our manifold, then

these first-order deformations integrate to genuine smoothings (see [Kaw92,
Ran92, Tia92]). Assuming that Friedman’s Condition (Theorem 1.2.2) holds,
we get a holomorphic family

µ : X → ∆ (1.18)

where ∆ ⊆ C denotes the complex unit disc such that X0 = µ−1(0) and
the fibers Xt = µ−1(t) are smooth complex manifolds for t ̸= 0. A result of
Kas–Schlessinger [KS72] shows that the family X is locally biholomorphic
to the model space

V =
{
(z, t) ∈ C4 × C |

4∑
j=1

z2j = t
}

(1.19)

near each ODP singularity. It can be shown that the resulting manifolds
Xt have trivial canonical bundle and are also Calabi–Yau (see [Fri86] for an
algebraic proof or [CGPY23] for a differential geometric proof).

Remark 1.2.3. We note here that the smoothings may only exist for t with
|t| sufficiently small. For simplicity, we shall rescale and assume that the
parameter space includes the complex unit disc ∆.

Putting everything together, we can finally define a conifold transition.

Definition 1.2.4. Let X̂ be a Calabi–Yau threefold. A conifold transition
starting from X̂, denoted X̂ → X0 ⇝ Xt, consists of a holomorphic map
π : X̂ → X0 and a family µ : X → ∆ with X0 = µ−1(0) such that

i) the map π : X̂ → X0 contracts a collection of disjoint (−1,−1)-curves
E1, . . . , Ek ⊆ X̂ to isolated ODP singularities s1, . . . , sk ∈ X0 and π is
a biholomorphism between X̂ \ (E1 ∪ . . . ∪ Ek) and X0 \ {s1, . . . , sk};
and

ii) the total space X is a smooth complex fourfold with a proper flat map
µ : X → ∆, where X0 = µ−1(0) and each Xt = µ−1(t) is a smooth
complex threefold for t ̸= 0.

6



1.3. The Hull–Strominger System

1.2.3 Topological Changes

From the local geometry, we see that conifold transitions contract 2-cycles
from the small resolution X̂ and generate 3-cycles on the smoothings. These
topological differences correspond to changes in Betti numbers bk, in partic-
ular if a conifold transition X̂ → X0 ⇝ Xt contracts N curves spanning ℓ
dimensions in homology, then

b2(Xt) = b2(X̂)− ℓ, b3(Xt) = b3(X̂) + 2(N − ℓ). (1.20)

A consequence of the above is that conifold transitions may not preserve the
Kähler condition.

Example 1.2.5. Consider the projective quintic

X̂ =
{
[z0 : . . . : z4] ∈ P4 |

4∑
j=0

z5j = 0
}
. (1.21)

Since X̂ is projective, it admits a Kähler metric and it can be shown that
b2(X̂) = 1. If we contract two linearly dependent (−1,−1)-curves E1, E2 on
X̂, we get that N = 2 and ℓ = 1. From this, we see that b2(Xt) = 0 and as
such, the smoothings Xt cannot admit Kähler structures.

The above example presents an issue that the Kähler condition is incompat-
ible with conifold transitions. An idea of Friedman [Fri91] and Reid [Rei87]
to get around this is to include any spaces that can be reached from a Kähler
Calabi–Yau threefold in our central class of objects, which leaves us with
the following central open questions:

Question 1.2.6. What spaces can be reached from a Kähler Calabi–Yau
threefold via conifold transitions? What properties do these space have?
What geometry should we endow these spaces with?

1.3 The Hull–Strominger System

A major conjecture to these open questions comes in the form of Reid’s
Fantasy, which conjectures that all Calabi–Yau threefolds can be linked by
a sequence of conifold transitions [Rei87]. This has since been verified for
large classes of examples (see e.g., [ACJM96, CGH90]). Alongside the fact
that conifold transitions do not preserve the Kähler condition, we see that

7



1.3. The Hull–Strominger System

a (Ricci-flat) Kähler metric is not the “correct” geometry for these spaces.
A conjecture of Yau says that the model geometry should come from a
pair of compatible metrics with the relevant compatibility coming from the
Hull–Strominger system, a system of PDEs originating from heteroric string
theory which describe conditions for supersymmetry.

Definition 1.3.1. Let X be a compact complex threefold with nowhere-
vanishing holomorphic (3, 0)-form Υ and let E → X be a holomorphic vector
bundle. Fix a constant α′ > 0. A solution to the Hull–Strominger system
with slope parameter α′ consists of a pair of Hermitian metrics ω on X and
H on E such that

F 2,0 = F 0,2 = 0, ω ∧ F 1,1 = 0, (1.22)

√
−1∂∂ω − α′ ·

(
tr(Rm ∧ Rm)− tr(F ∧ F )

)
= 0, (1.23)

d†ω =
√
−1(∂ − ∂) log ∥Υ∥ω, (1.24)

where Rm and F are the Chern curvatures of ω and H respectively.

Proposed by Hull [Hul86] and Strominger [Str86], these equations gener-
alize the compactification of the 10D heterotic string in [CHSW85]. The
first of these equations is a Hermitian Yang–Mills (HYM) relation between
the metrics ω and H. The second equation is called the heterotic Bianchi
identity and comes from the Green–Schwarz anomaly cancellation [GS84].
The third equation, which at first glance seems to be a relation between the
torsion of the metric ω, was shown by Li–Yau [LY05] to be equivalent to the
conformally balanced condition

d
(
∥Υ∥ωω2

)
= 0. (1.25)

A proof of their result can be found in Appendix A.

Remark 1.3.2. Some authors may use other connections instead of the
Chern connection in the definition of the Hull–Strominger system and the
Anomaly flow in §4. Both of these can also be generalized to other dimen-
sions (see e.g., [PPZ19a]) and to manifolds with other special structures (see
e.g., [CGFT22, dlOLS18, dSGFLSE24, FIUV15, II05]). We will, however,
restrict our attention to the complex dimension 3 setting and later, the G2

setting in §5.2.
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1.3. The Hull–Strominger System

Using this, we have the aforementioned Reid’s Fantasy with modifications
by Yau.

Conjecture 1.3.3 (Reid [Rei87], Yau). All Calabi–Yau threefolds can be
linked by a sequence of conifold transitions. Further, each Calabi–Yau three-
fold admits a unique solution to the Hull–Strominger system (1.22) - (1.25)
in a suitable cohomology class.

Since our main objects of study includes Kähler Calabi–Yau threefolds, the
proposed geometry should generalize the notion of a (Ricci-flat) Kähler met-
ric. We see this in the example below.

Example 1.3.4. LetX be a Käher Calabi–Yau threefold with Kähler metric
ω and holomorphic (3, 0)-form Υ. By Yau’s Theorem, there exists a unique
Ricci-flat Kähler metric ωCY ∈ [ω]. Let E = T 1,0X be the holomorphic
tangent bundle of X and set both connections ω and H equal to ωCY. Since
ωCY is Ricci-flat, we get that H is Hermitian Yang–Mills with respect to ω
and also that the norm ∥Υ∥ω = ∥Υ∥ωCY is constant. The Kähler condition
tells us that ωCY and hence ω2

CY is closed. It follows that the pair (ωCY, ωCY)
of Hermitian metrics solve (1.22) - (1.25) for any choice of slope parameter
α′, as expected.

9



Chapter 2

Geometrizing Conifold
Transitions

As conjectured by Reid’s Fantasy (Conjecture 1.3.3) we expect that there
exist solutions to the Hull–Strominger system (1.22) - (1.25) on both sides
of a conifold transition X̂ → X0 ⇝ Xt. In this chapter, we discuss the
problem of geometrizing conifold transitions and the metric constructions of
Fu–Li–Yau [FLY12] and Collins–Picard–Yau [CPY24].

2.1 Metrics on the Small Resolutions, Cones, and
Conifolds

2.1.1 Candelas–de la Ossa Metrics on the Local Model

Recall our model space

V̂ = O(−1)⊕O(−1) → P1 (2.1)

with trivializations

(U, (λ, u, v)) and (U ′, (λ′, u′, v′)). (2.2)

We have a well-defined radius function r : V̂ → [0,∞) given by

r(λ, u, v) = (1 + |λ|2)
1
3 · (|u|2 + |v|2)

1
3 . (2.3)

Without the exponent of 1
3 , this function measures the distance from a point

to the zero section E ≃ P1 along the fibers using the Fubini–Study metric
ω̂FS. The exponent is introduced so that the radius function coincides with
the radius of the Calabi–Yau cone metric on the blowdown.

We can equip the space V̂ with a family of scaling maps SR : V̂ → V̂ for
R > 0 defined by

SR(λ, u, v) = (λ,R
3
2 · u,R

3
2 · v). (2.4)

10



2.1. Metrics on the Small Resolutions, Cones, and Conifolds

These maps are compatible with the radius function r as

r ◦ SR = R · r. (2.5)

In [CdlO90], Candelas–de la Ossa look for a family of Ricci-flat Kähler
metrics ω̂co,a on V̂ of the form

ω̂co,a =
√
−1∂∂fa(r

3) + 4a2ω̂FS, (2.6)

where fa(x) = fa(r
3) is a smooth function. By imposing the Ricci-flat

condition, they obtain a first-order ODE for fa:

x(f ′a(x))
3 + 6a2(f ′a(x))

2 = 1. (2.7)

We note that if f1(x) is a solution for a = 1, then fa(x) = a2 · f1( x
a3
) is a

solution for arbitrary a > 0.

The solution for a > 0 admits an expansion [CPY24] for x ≫ 1 given in

terms of r = x
1
3 by

fa(r
3) = c0 · r2 + c1 · a2 log(a−3r) + c2 · a4r−2 + c3 · a6r−4 + . . . (2.8)

for constants c0, c1, c2, c3, . . .. Thus after rescaling ω̂co,1 such that c0 = 1
2 ,

we have the following expansion for large radius r ≫ 1:

ω̂co,a −
1

2

√
−1∂∂r2 = c−1 · a2ω̂FS + c1 · a2

√
−1∂∂ log r

+ c2 · a4
√
−1∂∂r−2 + c3 · a6

√
−1∂∂r−4 + . . . . (2.9)

When a = 0, we instead have f0 =
1
2r

2 and get the metric

ω̂co,0 =
1

2

√
−1∂∂r2, (2.10)

which is singular on the zero section E.

Using the (scaled) blowdown map π : V̂ → V0 given by

π(λ, u, v)

=
(λv + u√

2
,
−
√
−1(λv − u)√

2
,
−
√
−1(v + λu)√

2
,
−(v − λu)√

2

)
, (2.11)

we get that the radius function r on V̂ becomes ∥z∥
2
3 on V0 in the sense that

r(λ, u, v) = ∥π(λ, u, v)∥
2
3 . (2.12)

11



2.1. Metrics on the Small Resolutions, Cones, and Conifolds

As such, we will define another radius function r : V0 → [0,∞) by

r(z) = ∥z∥
2
3 . (2.13)

The singular space V0 admits a Calabi–Yau cone metric

ωco,0 =
1

2

√
−1∂∂r2 (2.14)

which is well known [CdlO90] to be Ricci-flat Kähler and is a cone metric
over the link L = {z ∈ V0 | r(z) = 1} ≃ S2 × S3. As such, we write

gco,0 = dr ⊗ dr + r2 · gL (2.15)

where gL is the pullback of a metric on L. The metrics ĝco,0 and gco,0 coincide
away from the zero section and singularity after identification by pullback.

Returning to the space V̂ , we obtained a 1-parameter family of metrics ĝco,a
for 0 ≤ a ≤ 1 which we will refer to as the Candelas–de la Ossa metrics on the
small resolution. This family of metrics satisfies two important properties:

(CO SR I) Normalization: For 0 < a ≤ 1, we have

ĝco,a = a2 · S∗
a−1(ĝco,1). (2.16)

(CO SR II) Asymptotically Conical Decay: There exists C > 0 independent
of a such that for all 0 < a ≤ 1,

∥(π−1)∗(ĝco,a)− gco,0∥gco,0 ≤ C · a2r−2. (2.17)

The asymptotic decay can be derived from (2.9) for a = 1. Pulling
back the estimate when a = 1 back by S∗

a gives the estimate for general
non-zero a. The estimate implies that the Candelas–de la Ossa metrics
ĝco,a converge uniformly to the cone metric gco,0 on compact sets away
from the zero section E.

In the sequel, we will work with neighbourhoods of the zero section in the
local model V̂ . As such, for R > 0, we define “tubular” neighbourhoods of
radius R by

T̂ (R) := {r ≤ R} ⊆ V̂ . (2.18)

Likewise, on the cone V0, we define the “disc” of radius R about the origin
by

D0(R) := {r ≤ R} ⊆ V0. (2.19)

12



2.1. Metrics on the Small Resolutions, Cones, and Conifolds

2.1.2 Balanced Metrics on the Small Resolution

Under the assumption that the original Calabi–Yau threefold X̂ admits a
Kähler metric ω, Fu–Li–Yau [FLY12] constructed a family of balanced met-
rics ω̂FLY,a for 0 ≤ a ≤ 1 on X̂ based on the Candelas–de la Ossa local
metrics ω̂co,a. This was achieved using a gluing method that interpolates
between the local metrics around contracted (−1,−1)-curves and the ambi-
ent Ricci-flat Kähler metric ω̂CY ∈ [ω] which exists by Yau’s Theorem (see
also [CPY24, Chu12] for further details on the metrics ω̂FLY,a). Their con-
struction heavily exploits the known nature of the model neighbourhoods
and produces metrics such that

dω̂2
FLY,a = 0, [ω̂2

FLY,a] = [ω̂2
CY] ∈ H4(X̂,R). (2.20)

For our purposes, we mainly make use of the following two properties:

(FLY SR I) Local Model: There exists δ > 0 and R > 1 such that for all
0 ≤ a ≤ 1, we have

ω̂FLY,a|{r<δ} = R · ω̂co,a. (2.21)

Here the function r : X̂ → [0,∞) extends the local functions r de-
fined on a neighborhood of the curves Ej ⊂ V̂ to the whole compact

manifold X̂ such that the set {r < δ} consists of small disjoint open
neighborhoods containing the (−1,−1)-curves E1, . . . , Ek.

(FLY SR II) Uniform Convergence: For any compact set K ⊂ X̂ \ (E1 ∪
· · · ∪Ek), the sequence ω̂FLY,a converges uniformly to ω̂FLY,0 as a→ 0
on K.

For each Ej ≃ P1, these metrics satisfy∫
P1

ω̂FLY,a → 0 as a→ 0. (2.22)

The limiting metric ω̂FLY,0 is singular on the curves E1, . . . , Ek and only

defines a genuine metric on X̂ \ (E1 ∪ . . . ∪ Ek).

Let π : X̂ → X0 be the blowdown map contracting the curves E1, . . . , Ek and
sj = π(Ej) be the singular points ofX0. We write (X0)reg = X0\{s1, . . . , sk}
to denote the regular part of X0. Since X̂ \ (E1 ∪ . . . ∪ Ek) ≃ (X0)reg, the
limiting metric ω̂FLY,0 defines a Riemannian structure ((X0)reg, ωFLY,0) with
conical singularities.
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2.1. Metrics on the Small Resolutions, Cones, and Conifolds

2.1.3 Hermitian Yang–Mills Metrics on the Small
Resolution

Using the balanced metrics ω̂FLY,a of Fu–Li–Yau and the additional assump-

tion that X̂ is also simply connected, Collins–Picard–Yau [CPY24] were able
to construct another family of metrics that satisfy the Hermitian Yang–Mills
condition with respect to ω̂FLY,a. We briefly discuss their construction here.

Recall that the initial manifold X̂ is Kähler Calabi–Yau with some Ricci-flat
Kähler metric ω̂CY.

As noted in [Yau93], by the de Rham Decomposition Theorem we have that
if the tangent bundle T 1,0X̂ splits holomorphically, then X̂ itself also splits
holomorphically as a product. By dimensional considerations, at least one
factor in this decomposition must be complex 1-dimensional and compact-
ness requires that this be a torus. The simply connected condition rules this
possibility out.

Since ω̂CY is Ricci-flat Kähler on X̂, we have that T 1,0X̂ is polystable with
repect to [ω̂CY]. As such, we must have that (X̂, ω̂CY) satisfies the stability
condition

1

rankF

∫
X̂
c1(F ) ∧ ω̂2

CY < 0 (2.23)

for all torsion-free coherent proper subsheaves F ⊆ T 1,0X̂. The Fu–Li–Yau
metrics ω̂FLY,a share the same square cohomology class with ω̂CY (2.20).
Hence

1

rankF

∫
X̂
c1(F ) ∧ ω̂2

FLY,a < 0 (2.24)

and so the bundle T 1,0X̂ is stable with respect to each of the Fu–Li–Yau met-
rics ω̂FLY,a. The Li–Yau [LY87] generalization of the Donaldson–Uhlenbeck–
Yau Theorem [Don85, UY86] for Gauduchon metrics yields a family of Her-
mitian metrics Ĥa satisfying

F
Ĥa

∧ ω̂2
FLY,a = 0,

∫
X̂
log
( det Ĥa

det ĝFLY,a

)
dvolĝFLY,a

= 0. (2.25)

The sequence of metrics Ĥa satisfies the following estimates:

Proposition 2.1.1 (Collins–Picard–Yau [CPY24]). There exist constants
C,Cp > 0 for each p ≥ 0 such that the metrics Ĥa satisfy

C−1 · ĝFLY,a ≤ Ĥa ≤ C · ĝFLY,a, (2.26)
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2.2. Metrics on the Smoothings

∥∇pĤa∥ĝFLY,a
≤ Cp · r−p. (2.27)

The metricH0 on (X0)reg can be constructed as the limit of the Ĥa. This was

done in [CPY24] by taking a subsequence of {Ĥa}, however the estimates in
Proposition 2.1.1 actually imply that the full sequence converges on compact
sets (see Appendix A of [FPS24] for the full argument). As such, there exists
a Hermitian Yang–Mills metric H0 over the singular space X0 such that

FH0 ∧ ω2
FLY,0 = 0, C−1 · gFLY,0 ≤ H0 ≤ C · gFLY,0. (2.28)

Further, we also have that the sequence Ĥa converges uniformly to H0 on
any compact set K ⊆ X̂ \ (E1 ∪ . . . ∪ Ek) as a→ 0.

2.2 Metrics on the Smoothings

2.2.1 Candelas–de la Ossa Metrics on the Local Model

Candelas–de la Ossa [CdlO90] also constructed Ricci-flat Kähler metrics
ωco,t on the local models

Vt =
{
z ∈ C4 |

4∑
j=1

z2j = t
}

(2.29)

for non-zero t. Here, we have the radius function r : Vt → [0,∞)

r(z) = ∥z∥
2
3 (2.30)

matching the definition of those from the previous section. The Ansatz that
Candelas–de la Ossa used for these spaces were likewise of the form

ωco,t =
√
−1∂∂ft(r

3), (2.31)

where ft(x) = ft(r
3) is a smooth function. By once again imposing the

Ricci-flat condition, they arrive at another ODE for ft:

x(f ′t(x))
3 + (f ′t(x))

2f ′′t (x− |t|2) = 1

6
. (2.32)

For t = 0, the solution is proportional to

f0(r
3) = r2 (2.33)
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2.2. Metrics on the Smoothings

and for non-zero t, the solution is proportional to

ft(r
3) =

( |t|2
2

) 1
3

∫ cosh−1( r
3

|t| )

0

(
sinh(2τ)− 2τ

) 1
3dτ. (2.34)

Like the metrics ω̂co,a on the small resolution, the metrics ωco,t are also
asymptotic to the cone geometry (V0, ωco,0).

Even though the spaces Vt are distinct, we still have scaling maps by con-
sidering the larger space C4. Given R ̸= 0, we define SR : C4 → C4 by

SR(z) = R
3
2 · z. (2.35)

The map SR sends Vρ to VR3·ρ and satisfies

r ◦ SR = R · r and S∗
R(ωco,0) = R2 · ωco,0. (2.36)

In order to compare ωco,t to the cone metric ωco,0, we pullback by the map
Φt : C4 \ {0} → C4 from §1.2.1, which was defined by

Φt(z) = z +
tz

2∥z∥2
. (2.37)

One can show that the scaling maps and the maps Φt are related by

Φt = S
t
1
3
◦ Φ1 ◦ S

t−
1
3
. (2.38)

The radius functions interact with Φt by

r(Φt(z)) =

((
r(z)

)3
+

|t|2

4
(
r(z)

)3
) 1

3

. (2.39)

As such, for convenience, we define

βt,ρ =
(
ρ3 +

|t|2

4ρ3

) 1
3
. (2.40)

Using the maps SR and Φt, we have the analogous properties of the Candelas–
de la Ossa metrics gco,t on the smoothings:

(CO SM I) Normalization: For t ̸= 0, we have

gco,t = |t|
2
3 · S∗

t−
1
3
(gco,1). (2.41)
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2.2. Metrics on the Smoothings

(CO SM II) Asymptotically Conical Decay: There exists a constant C > 0
independent of t such that for all t ̸= 0,

∥(Φt)
∗(gco,t)− gco,0∥gco,0 ≤ C · |t|r−3. (2.42)

A consequence of this is that the metrics gco,t approach gco,0 on com-
pact sets away from the vanishing spheres {z ∈ Vt | ∥z∥2 = |t|} as
t→ 0.

The proof of the asymptotically conical decay estimate can be found in
[CH13], where the estimate is given on (V1, gco,1):

∥(Φ1)
∗(gco,1)− gco,0∥gco,0 ≤ C · r−3. (2.43)

The generic estimate for (Vt, gco,t) follows by pulling back by S
t−

1
3
.

As we did for the small resolution V̂ and the cone V0, we also define the
“disc” of radius R > 0 about the origin in Vt by

Dt(R) := {r ≤ R} ⊆ Vt. (2.44)

2.2.2 Balanced Metrics on the Smoothings

We return to the global setting, where we have a holomorphic family µ :
X → ∆ with smooth fibers Xt = µ−1(t) for t ̸= 0 and central fiber X0 =
µ−1(0) with singularities {s1, . . . , sk} which are locally of the from 0 ∈ V0.
Even though Example 1.2.5 shows that the compact complex manifolds Xt

may not admit Kähler metrics, Fu–Li–Yau [FLY12] prove that they admit
balanced metrics.

As we did in the case of the small resolutions, we first have to extend the
local maps r and Φt to global objects. To do this, we note that there are
disjoint open sets Uj ⊆ X containing each singularity sj such that Uj is
identified with

0 ∈ U ⊆
{
(z, t) ∈ C4 × C |

4∑
j=1

z2j = t
}
. (2.45)

We can then extend the local functions r(z) = ∥z∥
2
3 on C4 to a global

function r : X → [0,∞) with r−1(0) = {s1, . . . , sk}.

Next, we can extend the local maps Φt to global diffeomorphisms

Φt : X0 ∩
{
r(z) >

( |t|
2

) 1
3
}
→ Xt ∩ {r(z) > |t|

1
3 } (2.46)
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2.2. Metrics on the Smoothings

such that Φt is the model smoothing on the local sets Uj . This can be done
by taking a horizontal lift ξ of the vector field ∂

∂t which agrees with the
vector field generating the model smoothing. By flowing by the lift ξ, we
obtain Φt.

The Fu–Li–Yau construction [FLY12] gives a sequence ωFLY,t of Hermitian
metrics on Xt solving

dω2
FLY,t = 0. (2.47)

These are obtained first by a pullback and gluing construction followed by
a perturbation to ensure the balanced condition holds. The first step yields
auxiliary metrics gaux,t while the second produces the final metrics gFLY,t.

We briefly outline this process below.

• Step 1: The expression for ωaux,t from [FLY12] is

ω2
aux,t = pr2,2t

[
(Φ−1

t )∗
(
ω2
FLY,0 −

√
−1∂∂

(
ρ0 · f0(r3) ·

√
−1∂∂f0(r

3)
))

+
√
−1∂∂

(
ρt · ft(r3) ·

√
−1∂∂ft(r

3)
)]
, (2.48)

where the operator pr2,2t denotes the projection onto the (2, 2)-component
with respect to the complex structure Jt on Xt, the functions ρ0 and
ρt are smooth cutoff functions, and the functions f0 and ft are as in
(2.33) and (2.34).

These functions come from the local model ωco,t =
√
−1∂∂ft(r

3), so
that in a neighbourhood {r < δ}, where the cutoff functions are identi-
cally 1, we have ω2

aux,t = ω2
co,t. The metric ωaux,t is obtained by taking

a square root of (2.48) (see e.g., [Mic82]).

• Step 2: The perturbations correct the auxiliary metrics ωaux,t by set-
ting

ω2
FLY,t = ω2

aux,t + ∂∂
†
∂†γt − ∂∂†∂

†
γt, (2.49)

where γt ∈ Λ2,3(Xt) solves

Et(γt) = ∂ω2
aux,t, dγt = 0. (2.50)

Here Et denotes the Kodaira–Spencer operator [KS60], which is a 4th-
order elliptic operator which acts on (2, 3)-forms by

Et = ∂∂∂
†
∂† + ∂†∂∂

†
∂ + ∂†∂. (2.51)
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2.2. Metrics on the Smoothings

The adjoints in the definition are taken with respect to the auxiliary
metrics ωaux,t.

The construction is made such that dω2
FLY,t = 0, and the main part

of the argument in [FLY12] is to prove that ωFLY,t > 0 when |t| is
sufficiently small.

The two properties of these metrics that we shall need are the following:

(FLY SM I) Local Model: Near each singular point sj ∈ X , there exist
constants C,R0, cj > 0 and such that if |t| is sufficiently small, then

sup
{r≤R0}

∥gFLY,t − cj · gco,t∥gco,t ≤ C · |t|
2
3 . (2.52)

(FLY SM II) Uniform Convergence: For any compact set K ⊆ (X0)reg, the
sequence Φ∗

t (gFLY,t) converges uniformly to gFLY,0 as t→ 0 on K.

These properties can be extracted from the estimates in [FLY12], and we
refer to [CPY24] for further discussion.

2.2.3 Hermitian Yang–Mills Metrics on the Smoothings

In order to get approximate Hermitian Yang–Mills solutions on the smooth-
ings, Collins–Picard–Yau [CPY24] glued the pullback of the metric H0 to
the Candelas–de la Ossa metrics. These approximate metrics were per-
turbed to obtain true solutions Ht to the Hermitian Yang–Mills equations.
The resulting metrics Ht on Xt solve

FHt ∧ ω2
FLY,t = 0,

∫
Xt

log
( detHt

det gFLY,t

)
dvolgFLY,t = 0. (2.53)

Their construction is such that

Ht = eu ·Haux,t, ∥u∥Haux,t + r∥∇u∥Haux,t ≤ C · |t|
β
3 (2.54)

for some β ∈ (0, 1), and

Haux,t = χ · gco,t + (1− χ) ·
[
(Φ−1

t )∗H0

]1,1
. (2.55)

Here, the superscript (1, 1) denotes the Jt-invariant component, χ = ζ(|t|−αr3)
for some α ∈ (0, 1) and ζ : [0,∞) → [0, 1] is a cutoff function with ζ ≡ 1 on
[0, 1] and ζ ≡ 0 on [2,∞).
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The metrics Ht are uniformly equivalent to gFLY,t, so that

C−1 · gFLY,t ≤ Ht ≤ C · gFLY,t. (2.56)

Furthermore, for any compact set K ⊆ (X0)reg, the sequence Φ∗
t (Ht) con-

verges uniformly to H0 on K as t→ 0.

2.3 Cones and Conifolds as Complete Metric
Spaces

Much of the previous sections was devoted to constructing families of met-
rics for the Riemannian manifolds (V̂ , ĝco,a), (Vt, gco,t), (X̂, ĝFLY,a), and
(Xt, ĝFLY,t). In these cases, the Riemannian metric naturally induces the
structure of a distance function, and so we can consider each of these as
complete metric spaces. To do the same for the singular spaces V0 and X0,
we need to take some care in this process.

Given a cone V0 with link L equipped with a cone metric

g0 = dr ⊗ dr + r2 · gL (2.57)

on (V0)reg, we can define a distance function d0 on all of V0 by extending g0
to the singularity s by taking

g0|s = 0. (2.58)

Even though this extension is neither continuous nor positive-definite, since
the singularity is a point, this will have no effect on the lengths of curves.
Hence we can define d0 in the usual way, via the infimum of lengths of
piecewise smooth curves, without issue.

We can extend this idea to a conifold X0 with smooth metric g0 on (X0)reg
that satisfies

g0 ≤ Cj · (dr ⊗ dr + r2 · gL) (2.59)

in a neighbourhood of each isolated singularity sj . First, extend g0 to all of
X0 by setting

g0|sj = 0 (2.60)

at each singular point sj . The distance function d0 onX0 can then be defined
via integration over curves, and the distance between any two points in X0 is
finite. As a result, we can endow X0 with the structure of a compact length
space, whose admissible curves are exactly the piecewise differentiable curves
on X0. A similar construction to this is done in [SW13a, SW14].
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2.4 Notation and Conventions

Before we continue with our study of conifold transitions, we establish a
general notational guideline due to the sheer number of metrics and distance
functions involved:

• When working with quantities related to metrics on small resolutions
(X̂ and V̂ ), we will include a hat and a subscript to denote the metric
being used. We will also use the parameters a and b for families of
metrics on these spaces.

• In a similar vein, analogous quantities on the singular spaces (X0 and
V0) and the smoothings (Xt and Vt) will not have a hat, but will
include the appropriate subscript. The parameters used for families of
metrics here will be s and t.

• At times, we will present lemmata and results that can be applied in
more general settings, encompassing all of the above spaces. In this
case, we will not include the hat, but will use the Greek letters α and
β as parameters.

For example, we have the following:

ĝco,1
Candelas–de la Ossa metric on the

small resolution V̂ at a = 1.

gco,1
Candelas–de la Ossa metric on the

smoothing V1 at t = 1.

d̂FLY,a
Distance w.r.t. the balanced metric ĝFLY,a

on the small resolution X̂.

dFLY,t
Distance w.r.t. the balanced metric gFLY,t

on the smoothing Xt.

L̂
Ĥa

(γ)
Length of a curve γ w.r.t. the HYM metric Ĥa

on the small resolution X̂.

LHt(γ)
Length of a curve γ w.r.t. the HYM metric Ht

on the smoothing Xt.

diamα(Q) Diameter of a set Q w.r.t. a metric gα on a manifold X.

Table 2.1: Notational Examples for Quantities involving Metrics on Conifold
Transitions
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2.4. Notation and Conventions

In addition, from now on we adopt the convention that C denotes a generic
positive constant that may change from line to line but does not depend on
a or t.
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Chapter 3

Gromov–Hausdorff
Continuity of Conifold
Transitions

Since conifold transitions allow us to traverse the moduli space of Calabi–
Yau threefolds, it is expected that this process be continuous in some sense.
In this chapter, we apply this idea to the Hermitian Yang–Mills metric
pairs (ω̂FLY,a, Ĥa) on X̂ and (ωFLY,t, Ht) on Xt constructed in the previous
chapter. Though these are only partial solutions to the Hull–Strominger
system (1.22) - (1.25) – one can verify that these metrics fail the heterotic
Bianchi identity (1.23) – it is expected that solutions to the full system can
be obtained from these via perturbative methods (see §4 for a discussion on
one such method).

3.1 The Gromov–Hausdorff Topology

The Gromov–Hausdorff topology was introduced by Edwards [Edw75], and
was then independently rediscovered by Gromov in the 1980’s. Since then,
it has been an indispensable tool in geometry. There has been growing
interest in applications of the Gromov–Hausdorff topology to Calabi–Yau
manifolds starting with the work of Gross–Wilson [GW00]. In particular, it
has been applied in the study of the continuity of conifold transitions (see
e.g., [RZ11a, RZ11b, Son15]).

We briefly introduce some definitions and notation pertaining to the Gromov–
Hausdorff convergence of compact metric spaces. Other sources for this ma-
terial include e.g., [BBI01, Gro07, GW00, Edw75, Pet06]. We implicitly
assume that all metric spaces in this section are compact, though general-
izations do exist in the non-compact case ( cf., pointed Gromov–Hausdorff
topology/convergence).
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3.2. The Regular Case

Let (X, d) be a compact metric space. For Q ⊆ X and ϵ > 0, we set

Bϵ(Q) = ∪x∈QBϵ(x), (3.1)

where Bϵ(x) = {x′ ∈ X | d(x, x′) < ϵ} is the ball of radius ϵ around the
point x.

Definition 3.1.1. Let (X, dX) and (Y, dY ) be compact metric spaces and
ϵ > 0. A map f : X → Y is called an ϵ-isometry if

i)
∣∣dX(x, x′)− dY

(
f(x), f(x′)

)∣∣ < ϵ for all x, x′ ∈ X; and

ii) Y ⊆ Bϵ

(
f(X)

)
.

In general, ϵ-isometries need not be injective or even continuous.

Definition 3.1.2. The Gromov–Hausdorff distance dGH between two com-
pact metric spaces (X, dX) and (Y, dY ) is

dGH(X,Y ) = inf{ϵ > 0 | there exist ϵ-isometries

f1 : X → Y and f2 : Y → X}. (3.2)

The Gromov–Hausdorff distance dGH defines a metric, and hence a topology,
on the set M of isometry classes of compact metric spaces.

Remark 3.1.3. We note that only one of the ϵ-isometries in Definition
3.1.2 is required. This is because given an ϵ-isometry f1 : X → Y , one can
construct a 3ϵ-isometry f2 : Y → X. This, in essence, scales the Gromov–
Hausdorff metric dGH by a factor of 3, however both generate the same
topology on M.

3.2 The Regular Case

In this section, we will prove several continuity results in the regular case.
These regard the small resolution geometries (X̂, d̂FLY,a) and (X̂, d̂

Ĥa
) for

a > 0 with respect to the Gromov–Hausdorff topology. We will also prove
analogous results for the smoothing geometries (Xt, dFLY,t) and (Xt, dHt) for
t ̸= 0.

Our main result is as follows:
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3.2. The Regular Case

Theorem 3.2.1. Let X̂ be a simply connected Kähler Calabi–Yau threefold
and let X̂ → X0 ⇝ Xt be a conifold transition. The maps (0, 1] → M given
by

a 7→ (X̂, d̂FLY,a) and a 7→ (X̂, d̂
Ĥa

) (3.3)

are continuous in the Gromov–Hausdorff topology.

Furthermore, the maps ∆ \ {0} → M

t 7→ (Xt, dFLY,t) and t 7→ (Xt, dHt) (3.4)

are continuous in the Gromov–Hausdorff topology.

We will extend this result to the intermediate singular spaces (X0, dFLY,a)
and (X0, dH0) in a later section.

3.2.1 Gromov–Hausdorff versus Uniform Convergence

Since Riemannian manifolds exhibit more structure than that of a metric
space, there is considerably more flexibility when defining notions of conti-
nuity than simply using the Gromov–Hausdorff topology. In particular, a
very natural way to define continuity of a family of Riemannian manifolds is
through some condition on a family of metrics. As the following well-known
result shows, the Gromov–Hausdorff topology is weaker than the topology
of uniform convergence of Riemannian metrics. Many similar results can be
found in the literature ( cf., Example 7.4.4 of [BBI01]).

Proposition 3.2.2. Let gα be a family of metrics on a connected, compact,
manifold X of dimension n, where the parameter α ∈ U lies in a set in
either R or C. Fixing β ∈ U , suppose that the map α 7→ gα is continuous
at α = β in the L∞-norm with respect to gβ. Then the map α 7→ (X, dα) is
continuous at α = β in the Gromov–Hausdorff topology.

Remark 3.2.3. Since X is compact, all metrics on X are uniformly equiv-
alent. That is, given two metrics g and g̃ on X, there exists some C > 1
such that

C−1 · g ≤ g̃ ≤ C · g. (3.5)

Thus the continuity assumption in Proposition 3.2.2 could be replaced by
the continuity of the family of metrics gα in the L∞-norm with respect to
any metric on X.
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3.2. The Regular Case

Proof. Let 0 < ϵ < 1 and fix the parameter β ∈ U . Consider the identity
map (X, dα) → (X, dβ). This map is surjective, so it suffices to show that it
is a (C · ϵ)-isometry when |α− β| is small, for some constant C independent
of α.

The L∞-continuity of the metrics gα at α = β implies that we may choose
δ > 0 sufficiently small such that if |α−β| < δ, then supX ∥gα−gβ∥gβ < ϵ. It
follows that there exists some ϵ′ = ϵ′(δ) such that for all α with |α− β| < δ,
we have

(1− ϵ′) · gβ ≤ gα ≤ (1 + ϵ′) · gβ. (3.6)

Thus for any α with |α − β| < δ, the length of a curve γ satisfies Lα(γ) ≤
(1 + ϵ′) · Lβ(γ). It follows that

D := (1 + ϵ′) · diamβ(X) ≥ diamα(X) (3.7)

for all such α.

Pick points p, q ∈ X and choose minimizing geodesics γα, γβ : [0, 1] → X
from p to q in the gα and gβ metrics, respectively. We have that γα(0) =
γβ(0) = p and γα(1) = γβ(1) = q, and furthermore Lα(γα) = dα(p, q) and
Lβ(γβ) = dβ(p, q). Comparing the lengths of γα and γβ in the metrics gα
and gβ, we note that

|Lα(γα)− Lβ(γα)| ≤
∫ 1

0
∥gβ − gβ∥gβ · ∥γ̇α∥gβ ds

≤
(
sup
X

∥gα − gβ∥gβ
)
·
∫ 1

0
∥γ̇α∥gβ ds

< D · ϵ. (3.8)

Similarly, we have
|Lα(γβ)− Lβ(γβ)| < D · ϵ. (3.9)

From this, we see that when |α− β| < δ, we have

dα(p, q) ≤ Lα(γβ) < Lβ(γβ) +D · ϵ = dβ(p, q) +D · ϵ. (3.10)

Similarly,
dβ(p, q) < dα(p, q) +D · ϵ, (3.11)

and so
|dα(p, q)− dβ(p, q)| < D · ϵ when |α− β| < δ. (3.12)
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3.2. The Regular Case

Since this choice of δ did not depend on the choice of p, q ∈ X, we see that
the identity map is a (D · ϵ)-isometry, completing the proof.

The above can be applied to the metrics on the small resolution X̂, however
since the metrics on the smoothings Xt all lie on different spaces, we require
a slight variation:

Corollary 3.2.4. Let (Xα, gα) be a family of connected, compact Rieman-
nian manifolds of dimension n, where the parameter α ∈ U lies in a set in
either R or C. Fixing β ∈ U , suppose that for each α ∈ U , there exists a dif-
feomorphism Fα : Xβ → Xα with Fβ = IdXβ

. Suppose the map α 7→ F ∗
α(gα)

is continuous at α = β in the L∞-norm with respect to gβ. Then the map
α 7→ (Xα, dα) is continuous at α = β in the Gromov–Hausdorff topology.

Proof. The proof follows by applying the Proposition 3.2.2 to the metrics
F ∗
α(gα) on the fixed manifold Xβ. As such, the map α 7→

(
Xβ, F

∗
α(gα)

)
is

continuous at α = β in the Gromov–Hausdorff topology. Since
(
Xβ, F

∗
α(gα)

)
is isometric to (Xα, gα), we get the desired result.

3.2.2 The Small Resolution Metrics ĝFLY,a

In order to prove Theorem 3.2.1, it suffices by Proposition 3.2.2 to show
that each of the families of metrics is continuous in the L∞-norm. We begin
with the Fu–Li–Yau balanced metrics on the small resolution X̂.

Lemma 3.2.5. The Fu–Li–Yau metrics ĝFLY,a on X̂ satisfy the continuity
condition of Proposition 3.2.2 at each β ∈ U = (0, 1].

Proof. Fix b ∈ (0, 1]. Recall that the Fu–Li–Yau metrics are obtained via a
gluing construction which interpolates between a multiple of the Candelas–
de la Ossa metrics ĝco,a near the contracted (−1,−1)-curves and the ambient
Calabi–Yau metric ω̂CY away from the curves [CPY24, FLY12]. The gluing
region is independent of the parameter a and ω̂2

FLY,a−ω̂2
FLY,b is supported on

open sets around each (−1,−1)-curve. In particular, we have the following
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3.2. The Regular Case

expression on the local models with r3 < 1:

ω̂2
FLY,a − ω̂2

FLY,b

= C
2R−1

3

√
−1∂∂

(
χ
(2R2

3
fa(r

3)
)
·
(√

−1∂∂fa(r
3) + 8a2π∗ω̂FS

))

− C
2R−1

3

√
−1∂∂

(
χ
(2R2

3
fb(r

3)
)
·
(√

−1∂∂fb(r
3) + 8b2π∗ω̂FS

))
,

(3.13)

where C and R are constants, χ is a smooth cutoff function, and fa and
fb are defined by (2.7). It follows that the map ∥ω̂2

FLY,a − ω̂2
FLY,b∥2ĝFLY,b

is

smooth in a and p ∈ X̂.

Since b ̸= 0, we can pick some h > 0 such that I = [b− h, b+ h] ⊆ (0, 1] (or
I = [b− h, 1] ⊆ (0, 1] if b = 1). One can check that in coordinates around a
point p ∈ X̂, each component in (3.13) is smooth in a and p. In particular,
differentiating fa(r

3) involves uniform bounds since we have the expression

fa(r
3) = a2 · f1( r

3

a3
) and because a > 0, hence r3

a3
lies in a compact set.

It follows that the covariant derivative of ∥ω̂2
FLY,a−ω̂2

FLY,b∥2ĝFLY,b
is continuous

on I× X̂. By compactness, we obtain uniform boundedness of the covariant
derivative on I. Then, using a corollary of the Arzelà–Ascoli Theorem,
the pointwise convergence of the function ∥ω̂2

FLY,a− ω̂2
FLY,b∥2ĝFLY,b

is actually

uniform.

In general, a positive (n− 1, n− 1)-form has a unique (n− 1)-th root which
is determined in a continuous fashion (see e.g., [Mic82]). Applying this, it
follows that

lim
a→b

sup
X̂

∥ĝco,a − ĝco,b∥ĝco,b = 0 (3.14)

as desired.

3.2.3 The Smoothing Metrics gFLY,t

We now prove the analogue of Lemma 3.2.5 for the smoothing metrics gFLY,t

on Xt.

Recall from Definition 1.2.4 that a conifold transition involves a holomorphic
smoothing µ : X → ∆ of X0 with fibers Xt = µ−1(t). Fix s ̸= 0 and consider
the smoothingsXt nearXs. As this is a smooth family of complex manifolds,
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3.2. The Regular Case

Ehresmann’s Lemma yields a smoothly varying family of diffeomorphisms
Ft : Xs → Xt such that Fs = IdXs .

From §2.2.2, the Fu–Li–Yau metrics gFLY,t were constructed in two steps.
First, a gluing construction, which resulted in a family of auxiliary metrics
gaux,t, and then a perturbation.

The expression (2.48) for ω2
aux,t is smooth in the parameter t and hence we

can employ the method in the proof of Lemma 3.2.5. Since the square root
construction is continuous and the family of diffeomorphisms Ft : Xs → Xt

varies smoothly, we have

lim
t→s

sup
Xs

∥F ∗
t (gaux,t)− gaux,s∥gaux,s = 0. (3.15)

Corollary 3.2.4 then applies to the auxiliary spaces (Xt, gaux,t), however
these are not the desired balanced metrics. For this, we need to estimate
the correction term γt appearing in (2.49).

The correction term γt comes from solving

Et(γt) = ∂ω2
aux,t. (3.16)

Hence we need to deduce that the solutions γt vary smoothly from the fact
that the right-hand sides ∂ω2

aux,t vary smoothly for t ̸= 0. This will follow
from properties of the Kodaira–Spencer operator Et (which here is deter-
mined with respect to the auxiliary metrics ωaux,t).

Lemma 3.2.6. Let X̂ be a Kähler Calabi–Yau threefold and let X̂ → X0 ⇝
Xt be a conifold transition. Endow Xt with the auxiliary Hermitian metric
ωaux,t from the Fu–Li–Yau construction [FLY12]. Then Et : Λ2,3(Xt) →
Λ2,3(Xt) satisfies kerEt = {0} for all t with |t| sufficiently small.

Proof. Recall that the Kodaira–Spencer operator is defined by

Et = ∂∂∂
†
∂† + ∂†∂∂

†
∂ + ∂†∂. (3.17)

Let ξ ∈ Λ2,3(Xt) be such that ξ ∈ kerEt. Integrating the identity ⟨Et(ξ), ξ⟩ =
0 by parts implies that

∂ξ = 0, ∂
†
∂†ξ = 0. (3.18)
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3.2. The Regular Case

We note that ∂†ξ ∈ Λ1,3(Xt), and so ∂(∂†ξ) = 0 by type consideration. It is
noted in [FLY12] that

H1,3(Xt,C) = H0(Xt, TXt) = 0 (3.19)

by using that H1,3(X̂,C) = 0 on the small resolution together with Hartog’s
Lemma. As such, there exists some η ∈ Λ1,2(Xt) such that

∂†ξ = ∂η (3.20)

and so
⟨∂†ξ, ∂†ξ⟩ = ⟨∂†∂†ξ, η⟩ = 0. (3.21)

From this, we can conclude that if ξ ∈ Λ2,3(Xt)∩ kerEt, then ∂ξ = ∂†ξ = 0.
It follows that ξ ∈ Λ3,2(Xt) satisfies

∆∂ξ = 0 where ∆∂ = ∂∂
†
+ ∂

†
∂. (3.22)

By the Hodge Theorem, this defines an element in Dolbeault cohomology,
and since Xt has trivial canonical bundle, we have

H3,2(Xt,C) = H2(Xt,Ω
3
Xt
) = H2(Xt,OXt). (3.23)

Lemma 8.2 in [Fri91] states that if H2(X̂,O
X̂
) = 0, then H2(Xt,OXt) = 0.

Since
H2(X̂,O

X̂
) = H0,2(X̂,C) = H0,1(X̂,C) = 0 (3.24)

on the initial Kähler Calabi–Yau threefold X̂, we conclude thatH3,2(Xt,C) =
0 and so ξ = 0.

We will also need some uniform estimates at t → s. This is a standard
argument given that kerEt is trivial and Xt is smooth.

Lemma 3.2.7. Fix s ̸= 0. There exists ϵ > 0 and C > 1 such that

∥ξt∥C4,α(Xt) ≤ C · ∥Et(ξt)∥Cα(Xt) (3.25)

for all ξt ∈ Λ2,3(Xt) with |t − s| < ϵ. Here each norm on Xt is taken
with respect to the auxiliary Hermitian metrics ωaux,t from the Fu–Li–Yau
construction.
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3.2. The Regular Case

Proof. Since the compact manifolds Xt deform smoothly to the compact
manifold Xs, the Schauder estimates

∥ξt∥C4,α(Xt) ≤ C ·
(
∥ξt∥C0(Xt) + ∥Et(ξt)∥Cα(Xt)

)
(3.26)

hold uniformly for all t sufficiently close to s where the norms on Xt are
taken with respect to ωaux,t. We would like to upgrade this estimate to
(3.25).

Suppose that (3.25) is false. Then there exists a sequence tj → s and
constants Cj → ∞ such that

∥ξtj∥C4,α(Xtj )
> Cj · ∥Etj (ξtj )∥Cα(Xtj )

. (3.27)

Consider the normalized sequence given by

ξ̃tj =
ξtj

∥ξtj∥C4,α(Xtj )
. (3.28)

By our assumption, we have

∥ξ̃tj∥C4,α(Xtj )
= 1, ∥Etj (ξ̃tj )∥Cα(Xtj )

< C−1
j , (3.29)

and so we may apply the Arzelà–Ascoli Theorem to extract a convergent
subsequence with limit ξ̃∞ satisfying

Es(ξ̃∞) = 0. (3.30)

By the previous lemma ξ̃∞ = 0. However, we have (3.26), which says

1 ≤ C ·
(
∥ξ̃tj∥C0(Xtj )

+ ∥Etj (ξ̃tj )∥Cα(Xtj )

)
, (3.31)

and so
1

2C
≤ ∥ξ̃tj∥C0(Xtj )

(3.32)

for sufficiently large j. This means that

∥ξ̃∞∥C0(Xs) > 0, (3.33)

which is a contradiction.
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3.2. The Regular Case

Returning to the construction of the metrics ωFLY,t, we claim that F ∗
t (γt) →

γs in C4(Xs) as t→ s. Suppose not, so that there exists ϵ > 0 with

∥F ∗
tj (γtj )− γs∥C4(Xs) ≥ ϵ (3.34)

along a subsequence tj → s. The uniform elliptic estimate (3.25) implies that
∥γt∥C4,α(Xt) ≤ C, and so F ∗

t (γt) is also bounded on (Xs, gaux,s). Applying
the Arzelà–Ascoli Theorem, there is a subsequence converging to a limit γ∞
on Xs solving

Es(γ∞) = ∂ω2
aux,s. (3.35)

It follows that
Es(γ∞ − γs) = 0, (3.36)

and since kerEs = {0}, we conclude that γ∞ = γs, which contradicts (3.34).

Using that F ∗
t (γt) → γs, taking a square root of (2.49) gives a family of

metrics ωFLY,t that vary continuously. Hence

lim
t→s

sup
Xs

∥F ∗
t (gFLY,t)− gFLY,s∥gaux,s = 0. (3.37)

By Remark 3.2.3, this convergence also holds with respect to the Fu–Li–Yau
metric gFLY,s and thus Corollary 3.2.4 applies to the family (Xt, gFLY,t). This
shows that (Xt, dFLY,t) → (Xs, dFLY,s) in the Gromov–Hausdorff topology
as t→ s.

3.2.4 The Small Resolution Metrics Ĥa

We again consider the small resolution X̂, where there is a family of metrics
Ĥa satisfying the Hermitian Yang–Mills equation

F
Ĥa

∧ ω̂2
FLY,a = 0. (3.38)

We will show that for fixed b ∈ (0, 1],

lim
a→b

sup
X̂

∥Ĥa − Ĥb∥Ĥb
= 0. (3.39)

Suppose instead that this is false. Then there exists ϵ > 0 and a sequence
aj → b such that

∥Ĥaj − Ĥb∥Ĥb
≥ ϵ,

√
−1Λω̂FLY,aj

F
Ĥaj

= 0 (3.40)
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3.2. The Regular Case

for all aj . By the estimates in Proposition 2.1.1 and uniform equivalence of
the Fu–Li–Yau metrics ĝFLY,a near b, we have that

C−1 · ĝFLY,b ≤ Ĥa ≤ C · ĝFLY,b. (3.41)

Also, standard estimates for the Hermitian Yang–Mills equations give that

∥∇Ĥa∥ĝFLY,b
+ ∥∇2Ĥa∥ĝFLY,b

≤ C. (3.42)

(See e.g., Proposition 3.9 of [CPY24] with the function r ≡ 1 and the
higher-order estimates that follow for a proof of these standard estimates.)

By the Arzelà–Ascoli Theorem, we may extract a subsequence of Ĥaj that

converges to a limit Ĥ∞ such that

∥Ĥ∞ − Ĥb∥Ĥb
≥ ϵ, iΛω̂FLY,b

F
Ĥ∞

= 0, (3.43)

where we have use the fact that ω̂FLY,aj → ω̂FLY,b as aj → b.

We now have two Hermitian Yang–Mills metrics Ĥ∞ and Ĥb with respect
to ω̂FLY,b. By the uniqueness of Hermitian Yang–Mills metrics (see e.g.,
[Don85]), we have that these must be multiples of one another, that is
Ĥ∞ = λ · Ĥb. The normalization condition (2.25), however, tells us that
λ = 1, which contradicts (3.43).

As such, we have that (3.39) holds and we conclude that (X̂, d̂
Ĥa

) →
(X̂, d̂

Ĥb
) in the Gromov–Hausdorff sense as a→ b.

3.2.5 The Smoothing Metrics Ht

We now work with the final set of metrics Ht on Xt. Fix s ̸= 0 and consider
the smoothings Xt near the smooth fiber Xs with smoothly varying family of
diffeomorphisms Ft : Xs → Xt with Fs = IdXs . As in the previous sections,
we show that the metrics Ht also satisfy continuity of the form

lim
t→s

sup
Xs

∥F ∗
t (Ht)−Hs∥Hs = 0. (3.44)

The proof of this is similar to our earlier arguments. First, suppose otherwise
and extract a converging subsequence Htj with tj → s via the estimates
(2.56) and (3.42). The limit H∞ solves the Hermitian Yang–Mills equation
with respect to gFLY,s and hence by uniqueness and normalization, must be
equal to Hs, which is a contradiction.

As such, by applying Corollary 3.2.4 we get that (Xt, dHt) → (Xs, dHs) in
the Gromov–Hausdorff topology as t→ s.
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3.3. The Singular Case

3.3 The Singular Case

The previous section (§3.2) was concerned with the continuity of the families
of Riemannian manifolds on either side of a conifold transition X̂ → X0 ⇝
Xt. In this chapter, we extend these results to include the intermediate
singular spaces, which we can consider as complete metric spaces by the
process described in §2.3.

The main result of this chapter is the following:

Theorem 3.3.1. Let X̂ be a simply connected Kähler Calabi–Yau three-
fold and let X̂ → X0 ⇝ Xt be a conifold transition. The following four
convergences hold in the Gromov–Hausdorff topology:

As a→ 0: As t→ 0:

(X̂, d̂FLY,a) → (X0, dFLY,0), (Xt, dFLY,t) → (X0, dFLY,0),

(X̂, d̂
Ĥa

) → (X0, dH0), (Xt, dHt) → (X0, dH0).

Therefore the maps [0, 1] → M given by

a 7→ (X̂, d̂FLY,a) and a 7→ (X̂, d̂
Ĥa

), (3.45)

and the maps ∆ → M

t 7→ (Xt, dFLY,t) and t 7→ (Xt, dHt) (3.46)

are continuous and agree at a = t = 0.

The simply connected and Kähler conditions are required here since they
were needed for the metric constructions of Fu–Li–Yau and Collins–Picard–
Yau in §2.

In proving the above, we will make use of the following theorem (Theorem
2.5.23 of [BBI01]):

Theorem 3.3.2. Let (X, d) be a complete, locally compact length space.
Then given p, q ∈ X, there exists an admissible curve γ : [0, 1] → X such
that γ(0) = p and γ(1) = q with L(γ) = d(p, q).

In the above, admissible curves are a subset of continuous curves in X that
are closed under restrictions, concatenations, and linear reparameterizations.
While the upcoming definitions and results hold in the more general length
space setting, we keep in mind that for our purposes, we will later take these
to be piecewise smooth curves on our manifolds.
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We will adopt the convention that the diameter of a set Q refers to the
intrinsic diameter, as defined below:

Definition 3.3.3. Let Q be a bounded, path connected set in a length space
X. Given two points p, q ∈ Q, the intrinsic distance dint(p, q) between p and
q is defined by

dint(p, q) := inf
γ
L(γ), (3.47)

where the infimum is taken over all admissible curves γ from p to q contained
in Q.

The (intrinsic) diameter of Q is defined by

diam(Q) := sup
p,q∈Q

dint(p, q). (3.48)

We note that this is a non-standard definition, since many other authors
take the diameter of Q to be the supremum of the distance (in X) between
pairs of points in Q.

3.3.1 Reduction of Curves

Recall that we have defined the distance between points on our spaces by
integrating over admissible curves and taking infima. As such, it is helpful
to consider curves that avoid pathological behaviour. For our purposes, we
have the following Curve Reduction Lemma, which allows us to work with
curves that only enter each of a finite collection “bad” sets at most once.

Lemma 3.3.4. Let Q1, . . . , Qk be disjoint, closed, path-connected, bounded
sets in a complete, locally compact length space (X, d), and let γ : [0, 1] → X
be an admissible curve. Then there exists an admissible curve µ : [0, 1] → X
such that

i) µ(0) = γ(0) and µ(1) = γ(1);

ii) for all j ∈ {1, . . . , k}, the set µ−1(Qj) ⊆ [0, 1] is either empty of a
single closed subinterval of [0, 1]; and

iii) we have the estimate (noting Definition 3.3.3)

L(µ) ≤ L(γ) +

k∑
j=1

diam(Qj). (3.49)
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Proof. We construct the curve µ in the following manner:

Define a1 ∈ [0, 1] by

a1 := inf{s ∈ [0, 1] | γ(s) ∈ ∪k
j=1Qj}. (3.50)

Relabelling the sets Qj if necessary, we can say that γ(a1) ∈ Q1. Now, define
a time b1 ∈ [0, 1] by

b1 := sup{s ∈ [0, 1] | γ(s) ∈ Q1}. (3.51)

Using Theorem 3.3.2, we can take µ|[a1,b1] to be any admissible curve such
that µ([a1, b1]) ⊆ Q1, the endpoints µ(a1) = γ(a1) and µ(b1) = γ(b1) match,
and also

L
(
µ|[a1,b1]

)
≤ diam(Q1). (3.52)

For j > 1, we can define aj by

aj := inf{s ∈ (bj−1, 1] | γ(s) ∈ ∪k
j=1Qj}, (3.53)

and relabel the sets such that γ(aj) ∈ Qj ̸= Q1, . . . , Qj−1. Define bj by

bj := sup{s ∈ [0, 1] | γ(s) ∈ Qj} (3.54)

and once again choose µ|[aj ,bj ] to be any admissible curve such that µ([aj , bj ]) ⊆
Qj , the endpoints µ(aj) = γ(aj) and µ(bj) = γ(bj) match, and also

L
(
µ|[aj ,bj ]

)
≤ diam(Qj). (3.55)

Eventually, after ℓ ≤ k iterations, we will not have any aℓ+1.

At this point, we have constructed the curve µ on the set A = ∪ℓ
j=1[aj , bj ].

To finish the curve, we set µ(s) = γ(s) for s ∈ A′ = [0, 1] \A.

Since the class of admissible curves is closed under restrictions and con-
catenations (see Definition 2.1.1 of [BBI01]), we see by construction the µ is
admissible. Furthermore, µ−1(Qj) = [aj , bj ] for 1 ≤ j ≤ ℓ, and µ−1(Qj) = Ø
otherwise. Finally, we note that

L(µ) = L
(
µ|A′

)
+

ℓ∑
j=1

L
(
µ|[aj ,bj ]

)
≤ L

(
γ|A′

)
+

ℓ∑
j=1

diam(Qj)

≤ L(γ) +

k∑
j=1

diam(Qj). (3.56)
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3.3.2 The Main Lemma

To obtain the desired Gromov–Hausdorff convergence, we first prove a gen-
eral lemma, which encompasses the metrics on both the small resolution X̂
and the smoothings Xt. This method is similar to the one used in [SW13a].
With this lemma in place, it only remains to verify its hypothesis in each of
our geometric setups.

Lemma 3.3.5. Let Xα be a family of connected compact smooth manifolds
where the parameter α lies in either (0, 1] ⊆ R or ∆ \ {0} ⊆ C. Let X0 be a
compact analytic space with X0 = (X0)reg ∪ (X0)sing where (X0)reg is a con-
nected smooth manifold and (X0)sing consists of finitely many ODP singular
points {s1, . . . , sk}, meaning that each sj ∈ X0 is contained a neighbour-
hood Uj ⊆ X0 which can be identified with a neighbourhood of the origin in
V0 ⊆ C4.

For each α, let Kj,α ⊆ X0 and Cj,α ⊆ Xα be disjoint compact sets with
sj ∈ Kj,α for j ∈ {1, . . . , k}. Suppose further that we have a family of maps
Fα : Xα → X0 such that

i) the restriction Fα : Xα\∪k
j=1Cj,α → X0\∪k

j=1Kj,α is a diffeomorphism;
and

ii) for each j ∈ {1, . . . , k}, we have Fα(Cj,α) ⊆ Kj,α.

Let gα be a Riemannian metric on Xα for each α. Let g0 be a smooth
Riemannian metric on (X0)reg satisfying the bound g0 ≤ C ·(dr⊗dr+r2 ·gL)
in a neighbourhood Uj of the singular points sj and let d0 be the distance
function induced by g0 on X0 (see §2.3).

Now, let ϵ > 0 and suppose that there exist disjoint open sets G1, . . . , Gk ⊆
X0 and α0 > 0 such that each Gj satisfies

i) Kj,α ⊆ Gj when |α| < α0;

ii) (F−1
α )∗(gα) converges uniformly to g0 on the compact set X0 \∪jGj as

α→ 0;

iii) diam0(Gj) < ϵ; and

iv) diamα

(
F−1
α (Gj)

)
< ϵ when |α| < α0.

Then there exists α1 > 0 and a constant C > 0 independent of α such that

Fα : (Xα, dα) → (X0, d0) (3.57)
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is a (C · ϵ)-isometry for all α with |α| < α1.

Proof. Let ϵ > 0. We first prove that the image of each Fα is ϵ-dense in X0.
By our assumptions, the only points of X0 not in Fα(Xα) must lie in some
Kj,α. For each j, we can choose some p ∈ Gj \Kj,α, which is in the image
of Fα. Since diam0(Gj) < ϵ, we have that Fα(Xα) is ϵ-dense in X0 with
respect to d0 for sufficiently small α.

It remains to prove that there exists some C,α1 > 0 such that for all α with
|α| < α1, ∣∣dα(p, q)− d0

(
Fα(p), Fα(q)

)∣∣ < C · ϵ (3.58)

for each p, q ∈ Xα.

Let p, q ∈ Xα. Using Theorem 3.3.2, pick a curve γ : [0, 1] → X0 such that
γ(0) = Fα(p) and γ(1) = Fα(q) and

L0(γ) = d0
(
Fα(p), Fα(q)

)
. (3.59)

We will replace this curve γ with a new curve µ on X0 passing through the
“bad” sets Gj at most k times using the Curve Reduction Lemma (Lemma
3.3.4). The new curve µ is piecewise differentiable with µ(0) = Fα(p) and
µ(1) = Fα(q) with

L0(µ) ≤ L0(γ) +

k∑
j=1

diam0(Gj) ≤ L0(γ) + k · ϵ. (3.60)

The construction of Lemma 3.3.4 provides an integer ℓ ≤ k and a sequence

0 ≤ a1 ≤ b1 < . . . < aℓ ≤ bℓ ≤ 1, (3.61)

such that (by relabelling the sj if necessary) we have µ−1(Gj) = [aj , bj ] for
1 ≤ j ≤ ℓ and µ−1(Gj) = Ø for ℓ + 1 ≤ j ≤ k. Set Aj = [aj , bj ] and
A′ = [0, 1] \ ∪ℓ

j=1Aj .

Over the closed time intervals A′, the curve µ does not enter any Kj,α, and
can be identified with a curve on Xα by the diffeomorphism Fα. We use this
idea to define a curve µα : [0, 1] → Xα. For s ∈ A′, we set µα(s) = F−1

α ◦µ(s),
whereas on each Aj = [aj , bj ], we pick an arbitrary admissible curve with
endpoints µα(aj) = F−1

α ◦ µ(aj) and µα(bj) = F−1
α ◦ µ(bj).
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By the triangle inequality and the diameter estimate diamα

(
F−1
α (Gj)

)
< ϵ,

we have that

dα(p, q) ≤ dα
(
p, µα(a1)

)
+

ℓ∑
j=1

dα
(
µα(aj), µα(bj)

)
+

ℓ∑
j=2

dα
(
µα(bj−1), µα(aj)

)
+ dα

(
µα(bℓ), q

)
≤ Lα

(
µα|[0,a1]

)
+

ℓ∑
j=2

Lα

(
µα|[bj−1,aj ]

)
+ Lα

(
µα|[bℓ,1]

)
+ k · ϵ

≤
∫
A′

∥µ̇α(s)∥gα ds+ k · ϵ

=

∫
A′

∥µ̇(s)∥(F−1
α )∗(gα)

ds+ k · ϵ. (3.62)

The set A′ is defined such that µ|A′ lies in X0 \ ∪k
j=1Gj . Since the metrics

(F−1
α )∗(gα) converge uniformly to g0 on this region, we have that∫

A′
∥µ̇(s)∥(F−1

α )∗(gα)
ds ≤ (1 + δ) ·

∫
A′

∥µ̇(s)∥g0 ds

≤ (1 + δ) · L0(µ), (3.63)

where δ can be made arbitrarily small if |α| is sufficiently small. Applying
(3.59) and (3.60) yields∫

A′
∥µ̇(s)∥(F−1

α )∗(gα)
ds ≤ L0(µ) + δ ·

(
diam0(X0) + k · ϵ

)
. (3.64)

We note that diam0(X0) < ∞ since it is a union of a smooth geometry on
a compact manifold X0 \ ∪k

j=1Gj with sets Gj of bounded diameter that

have non-trivial intersection with X0 \∪k
j=1Gj . Using (3.62) and (3.63), and

choosing δ small enough yields

dα(p, q) ≤ L0(µ) + (k + 1) · ϵ, (3.65)

which combined with (3.59) and (3.60) tells us that

dα(p, q) ≤ d0
(
Fα(p), Fα(q)

)
+ (2k + 1) · ϵ. (3.66)
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We are left with showing the other side of the inequality (3.58). This is
achieved using a similar argument. Let ηα : [0, 1] → Xα be a curve such
that ηα(0) = p, ηα(1) = q, and

Lα(ηα) = dα(p, q). (3.67)

As before, we use the Curve Reduction Lemma (Lemma 3.3.4) to replace
ηα with a curve να that passes through the “bad” sets F−1

α (Gj) at most k
times. The replacement curve να : [0, 1] → Xα has the same endpoints as
ηα: να(0) = p, να(1) = q, and also satisfies the length estimate

Lα(να) ≤ Lα(ηα) +
k∑

j=1

diamα

(
F−1
α (Gj)

)
≤ Lα(ηα) + k · ϵ. (3.68)

The time interval [0, 1] can be broken into [0, 1] = Aα ∪ A′
α as before. Here

Aα is the union of closed intervals where the curve enters the F−1
α (Gj) and

the remainder A′
α is such that να|A′

α
lies in Xα \ ∪k

j=1F
−1
α (Gj).

We use the map Fα to identify να|A′
α

with a curve µ on X0 by setting

ν(s) = Fα ◦ να(s). The curve can be extended to all of [0, 1] by picking
admissible curves with appropriate matching endpoints. Using the triangle
inequality and diameter estimate as in (3.62), we get

d0
(
Fα(p), Fα(q)

)
≤
∫
A′

α

∥ν̇(s)∥g0 + k · ϵ. (3.69)

We again use the uniform convergence of the metrics (F−1
α )∗(gα) to g0 on

X0 \ ∪k
j=1Gj and the fact that ν|A′

α
lies in X0 \ ∪k

j=1Gj to get that∫
A′

α

∥ν̇(s)∥g0 ≤ (1 + δ) ·
∫
A′

α

∥ν̇(s)∥(F−1
α )∗(gα)

= (1 + δ) ·
∫
A′

α

∥ν̇α(s)∥gα

≤ (1 + δ) · Lα(να)

≤ Lα(να) + δ ·
(
diamα(Xα) + k · ϵ

)
, (3.70)

where δ is when |α| is sufficiently small.

We can uniformly bound the diameter diamα(Xα) when |α| is sufficiently
small. To see this, note that

(
Xα \ ∪k

j=1F
−1
α (Gj), gα

)
is isometric to

(
X0 \
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∪k
j=1Gi, (F

−1
α )∗(gα)

)
, which has uniformly bounded diameter since the met-

rics (F−1
α )∗(gα) → g0 uniformly in this region. The remaining pieces of the

geometry (Xα, gα), namely the sets F−1
α (Gj), all also have bounded diameter

and have non-trivial intersection with
(
Xα \ ∪k

j=1F
−1
α (Gj), gα

)
.

Combining the previous estimates and choosing δ small enough then yields

d0
(
Fα(p), Fα(q)

)
≤ dα(p, q) + (2k + 1) · ϵ, (3.71)

which together with (3.66) yields the desired (3.58) with uniform constant
C = 2k + 1.

3.3.3 Estimates on the Small Resolution

We now show how the Main Lemma (Lemma 3.3.5) gives the Gromov–
Hausdorff convergence of the families of metrics on the small resolution X̂
of a conifold transition X̂ → X0 ⇝ Xt. In this case, the manifolds Xα are all
taken to be the initial Kähler Calabi–Yau manifold X̂ and the maps Fα are
all the blowdown map π : X̂ → X0. The sets Cj,α ⊆ X̂ are the contracted
(−1,−1)-curves Ej ≃ P1, and the sets Kj,α ⊆ X0 are the singleton sets
consisting of the conifold singularities sj .

To apply Lemma 3.3.5, we must first find the open sets Gj and verify the
uniform diameter estimates in its hypothesis. Since these are local estimates
around the (−1,−1)-curves and around the singularities, we can work on
the local models (V̂ , ĝco,a) and (V0, gco,0). In particular, we will work on
“tubular” neighbourhoods

T̂ (R) := {r ≤ R} ⊆ V̂ , (3.72)

and discs
D0(R) := {r ≤ R} ⊆ V0, (3.73)

where r denotes the respective radius functions defined in §2. The sets T̂ (R)
and D0(R) are identified with each other using the blowdown map π.

Using the Asymptotically Conical Decay Property (CO SR II), we can fix a
constant K > 1 such that

∥(π−1)∗(ĝco,a)− gco,0∥gco,0 ≤ 1

2
(3.74)

when r > aK. For δ > 0 and a ∈ (0, δ
K ), it is helpful to split the “tube”

T̂ (δ) into two pieces

T̂ (δ) = T̂ (aK) ∪
(
T̂ (δ) \ T̂ (aK)

)
. (3.75)
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We will use the Scaling Property (CO SR I) on the smaller “tube” T̂ (aK),
an the Asymptotically Conical Decay Property (CO SR II) on the “annulus”
T̂ (δ) \ T̂ (aK).

“Tubular” Bounds

We begin by obtaining uniform bounds on the space
(
T̂ (aK), ĝco,a

)
. The

Scaling Property (CO SR I) says that

ĝco,a = a2 · S∗
a−1(ĝco,1) (3.76)

and so we have

Sa−1 :
(
T̂ (aK), ĝco,a

)
→
(
T̂ (K), a2 · ĝco,1

)
(3.77)

is an isometry. We then get the diameter relation

d̂iamco,a

(
T̂ (aK)

)
= a · d̂iamco,1

(
T̂ (K)

)
. (3.78)

We note that this diameter is finite since the set is compact and path con-
nected (there is a deformation retract from T̂ (K) to the path connected zero
section E ≃ P1.

“Annular” Bounds

We will make use of a convenient class of paths that move along the fibers
of the bundle V̂ . Fix a point p = (λ0, u0, v0) ∈ T̂ (δ) \ T̂ (aK) and let
ρ = r(p). By our choice of p, we have ρ ∈ (aK, δ]. Consider the curve
γ̂ : [aKρ , 1] → T̂ (δ) given by

γ̂(s) = (λ0, s
3
2 · u0, s

3
2 · v0). (3.79)

This curve begins in T̂ (aK) and moves along the fiber over λ0 to arrive at
γ̂(1) = p.

Using the blowdown map π : V̂ → V0 given by (1.8), one can check that this
curve is sent to the curve γ = π ◦ γ̂ in V0 given by

γ(s) = s
3
2 · π(p). (3.80)

It follows that
r
(
γ(s)

)
= s · ρ. (3.81)

We require a couple of properties of this curve.
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Lemma 3.3.6. The path γ(s) on V0 defined above has speed ∥γ̇∥gco,0 = ρ
and length Lco,0(γ) = ρ− aK.

Proof. The cone metric can be written as gco,0 = dr⊗ dr+ r2 · gL, where gL
is the pullback of a metric on the link {r = 1}. Let pr : V0 → L denote the
projection to the link given by

pr(z) =
z

∥z∥
. (3.82)

We can then compute that

dr(γ̇) =
d

ds
(r ◦ γ) = ρ (3.83)

and

pr∗(γ̇) =
d

ds
(pr ◦ γ) = 0. (3.84)

It follows that
gco,0(γ̇, γ̇) = ρ2. (3.85)

Taking the square root of this gives the speed ρ, and integrating the speed
over the interval [aKρ , 1] yields the length.

We now compare the length of the curve (γ̂, ĝco,a) to that of the curve
(γ, gco,0).

|L̂co,a(γ̂)− Lco,0(γ)| =

∣∣∣∣∣
∫ 1

aK
ρ

(
∥ ˙̂γ∥ĝco,a − ∥γ̇∥gco,0

)
ds

∣∣∣∣∣
≤
∫ 1

aK
ρ

∣∣∣∥ ˙̂γ∥ĝco,a − ∥γ̇∥gco,0
∣∣∣ ds

=

∫ 1

aK
ρ

∣∣∣∥γ̇∥(π−1)∗(ĝco,a) − ∥γ̇∥gco,0
∣∣∣ ds

=

∫ 1

aK
ρ

∣∣∣∣∣∥γ̇∥
2
(π−1)∗(ĝco,a)

− ∥γ̇∥2gco,0
∥γ̇∥(π−1)∗(ĝco,a) + ∥γ̇∥gco,0

∣∣∣∣∣ ds. (3.86)

We then obtain the estimate

|L̂co,a(γ̂)− Lco,0(γ)| ≤
∫ 1

aK
ρ

∣∣∣∣∣∥(π−1)∗(ĝco,a)− gco,0∥gco,0 · ∥γ̇∥2gco,0
∥γ̇∥(π−1)∗(ĝco,a) + ∥γ̇∥gco,0

∣∣∣∣∣ ds
≤
∫ 1

aK
ρ

∣∣∣∥(π−1)∗(ĝco,a)− gco,0∥gco,0 · ∥γ̇∥gco,0
∣∣∣ ds. (3.87)
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We now use ∥γ̇∥gco,0 = ρ, r
(
γ(s)

)
= s · ρ, and our estimate (3.74) from the

Asymptotically Conical Decay Property (CO SR II) to obtain

|L̂co,a(γ̂)− Lco,0(γ)| ≤
∫ 1

aK
ρ

1

2
ρ ds =

1

2
· (ρ− aK) (3.88)

Therefore

L̂co,a(γ̂) ≤ |L̂co,a(γ̂)− Lco,0(γ)|+ Lco,0(γ) ≤
3

2
· (ρ− aK). (3.89)

Hence, we get

d̂co,a
(
p, T̂ (aK)

)
≤ 3

2
· (δ − aK). (3.90)

Given two points p, q ∈ T̂ (δ), we can connect them using paths that move
down along their respective fibers and insert an intermediate path in T̂ (aK).
In tandem with our diameter bound (3.78) for T̂ (aK), we get an upper bound

d̂iamco,a

(
T̂ (δ)

)
≤ a · d̂iamco,1

(
T̂ (K)

)
+ 3 · (δ − aK)

≤
( 1

K
· d̂iamco,1

(
T̂ (K)

)
+ 3
)
· δ, (3.91)

which is uniformly bounded for a ∈ (0, δ
K ].

From this, we conclude the following:

Lemma 3.3.7. Fix K > 0 such that (3.74) holds. For δ > 0 and a ∈ (0, δ
K ]

there exists a constant C > 0 independent of the choice of δ and a such that

d̂iamco,a

(
T̂ (δ)

)
≤ C · δ. (3.92)

Applying the Main Lemma

The uniform diameter estimate from Lemma 3.3.7 will enable us to prove a
useful result akin to that of Song–Weinkove [SW13b].

Lemma 3.3.8. For 0 < ϵ < 1, there exists δ > 0 and a0 > 0 such that for
a ∈ (0, a0), we have

i) diamco,0

(
D0(δ)

)
< ϵ; and

ii) d̂iamco,a

(
π−1

(
D0(δ)

))
< ϵ.
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Proof. We have that D0(δ) is a closed disc of radius δ with respect to a
cone metric gco,0 = dr⊗ dr+ r2 · gL. Standard arguments from Riemannian
geometry show that the diameter of this is is bounded above by 2δ. Hence
we pick δ < ϵ

2 to satisfy the first condition.

For the second condition, we first note that π−1
(
D0(δ)

)
= T̂ (δ). Lemma

3.3.7 says that there exists a uniform constant C > 0 such that

d̂iamco,a

(
T̂ (δ)

)
≤ C · δ (3.93)

for all a ∈ (0, δ
K ].

As such, we choose δ small enough such that δ < C−1 · ϵ, δ < ϵ
2 , and set

a0 =
δ
K . The result follows.

We can now apply Lemma 3.3.7 to prove Gromov–Hausdorff convergence of
the three classes of metrics on the small resolution:

i) Convergence of the local models:(
T̂ (R), d̂co,a

)
→
(
D0(R), dco,0

)
In this case, we only have one ODP singularity s. By the diameter
estimate for gco,a from Lemma 3.3.8, we see that for each ϵ > 0, we
can pick the set G = D0(δ) for an appropriately small δ > 0 such that
Lemma 3.3.5 applies.

ii) Convergence of the Fu–Li–Yau balanced metrics:

(X̂, d̂FLY,a) → (X0, dFLY,0)

Here we use the fact that the Fu–Li–Yau metrics are, up to scaling,
just the Candelas–de la Ossa metrics in a compact set around the
(−1,−1)-curves Ei and the ODP singularities sj . For ϵ > 0, we can
pick Gj = D0(δj) for appropriately small δj around each singular point
sj . Coupling this with the smooth convergence of the Fu–Li–Yau met-
rics on compact sets away from the (−1,−1)-curves and singularities,
we can apply Lemma 3.3.5.

iii) Convergence of the Hermitian Yang–Mills metrics:

(X̂, d̂
Ĥa

) → (X0, dH0)
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3.3. The Singular Case

By Proposition 2.1.1, we have the estimate

C−1 · ĝco,a ≤ Ĥa ≤ C · ĝco,a (3.94)

on the local sets T̂ (δj) around each (−1,−1)-curve and D0(δj) around
each singularity sj , where the Fu–Li–Yau metrics are scaled Candelas–
de la Ossa metrics. The uniform estimates of Lemma 3.3.8 imply that
for ϵ > 0, there exists δj > 0 and a0 > 0 such that for all a ∈ (0, a0),

diamH0

(
D0(δj)

)
< ϵ and d̂iam

Ĥa

(
π−1

(
D0(δj)

))
< ϵ. (3.95)

We can therefore apply Lemma 3.3.5.

3.3.4 Estimates on the Smoothings

We now prove the analogous statements on the smoothings Xt. Recall that
given the conifold transition X̂ → X0 ⇝ Xt, we have maps

Φt : X0 ∩
{
r(z) >

( |t|
2

) 1
3
}
→ Xt ∩ {r(z) > |t|

1
3 }. (3.96)

In this case, we let the maps Ft be the inverses Φ−1
t , the sets Cj,t be the

vanishing spheres Dt(|t|
1
3 ), and the sets Kj,t be the discs D0

(( |t|
2

) 1
3

)
.

We once again make use of the local models (Vt, gco,t) and (V0, gco,0) to
obtain diameter bounds. In particular, we have the “discs”

Dt(R) := {r ≤ R} ⊆ Vt (3.97)

and
D0(R) := {r ≤ R} ⊆ V0 (3.98)

where r denotes the respective radius functions defined in §2. These are
related by

Φt

(
D0(R)

)
= Dt(βt,R) (3.99)

where

βt,R =
(
R3 +

|t|2

4R3

) 1
3
. (3.100)

As before, we can use the Asmyptotocally Conical Decay Property (CO SM
II) to fix a constant K > 1 such that

∥(Φt)
∗(gco,t)− gco,0∥gco,0 ≤ 1

2
(3.101)
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3.3. The Singular Case

when r > |t|
1
3K. For δ > 0 and t such that |t| ∈ (0, δ3

K3 ) it is again useful to
split the “disc” Dt(βt,δ) as

Dt(βt,δ) = Dt

(
β
t,|t|

1
3K

)
∪
(
Dt(βt,δ) \Dt

(
β
t,|t|

1
3K

))
. (3.102)

Analogously to the case of the small resolution, we will use the Scaling
Property (CO SM I) on the “disc” Dt

(
β
t,|t|

1
3K

)
, and the Asymptotocally

Conical Decay Property (CO SM II) on the “annulus” Dt(βt,δ)\Dt

(
β
t,|t|

1
3K

)
.

Bounds on the Disc

We start with the disc Dt

(
β
t,|t|

1
3K

)
. Recall from the Scaling Property (CO

SM I) that

gco,t = |t|
2
3 · S∗

t−
1
3
(gco,1). (3.103)

As such, we see that

S
t−

1
3
:
(
Dt

(
β
t,|t|

1
3K

)
, gco,t

)
→
(
D1

(
β1,K

)
, |t|

2
3 · gco,1

)
(3.104)

is an isometry. From this, it follows that

diamco,t

(
Dt

(
β
t,|t|

1
3K

))
= |t|

1
3 · diamco,1

(
D1(β1,K)

)
, (3.105)

which is finite since the set
(
D1(β1,K), gco,1

)
is compact and path connected

(we can construct a path from any point to the vanishing sphere, which is
topologically an S3, and hence path connected).

“Annular” Bounds

As we did in the case of the small resolution, we will define a convenient
class of paths to work with. Let p̃ ∈ Dt(βt,δ) \ Dt

(
β
t,|t|

1
3K

)
be a point in

the “annular” region. We construct a curve γ̃ from Dt

(
β
t,|t|

1
3K

)
to p̃ and

estimate its length Lco,t(γ̃) with respect to gco,t. To do this, we pullback to
the cone V0 and use a radial ray.

Since Φt is a diffeomorphism on the “annular” region, we can write p̃ = Φt(p)
for some p ∈ V0. Let ρ = r(p). We note that our choice of point p̃ is such

that ρ ∈ (|t|
1
3K, δ].
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3.3. The Singular Case

We define a path γ : [ |t|
1
3K
ρ , 1] → V0 by

γ(s) = s
3
2 · p (3.106)

and so
r
(
γ(s)

)
= s · ρ. (3.107)

This path is chosen to mirror the one defined for the small resolution. In
particular, it begins in D0(|t|

1
3K) and moves outward along a ray until it

reaches γ(1) = p.

The analogous results of Lemma 3.3.6 hold for this curve, and so we have

∥γ̇∥gco,0 = ρ and Lco,0(γ) = ρ− |t|
1
3K. (3.108)

We can pull this curve back to Vt and define γ̃ = Φt ◦ γ. As we did for the
small resolution, we compare the lengths of the curve γ and its pullback γ̃
with respect to their corresponding metrics gco,0 and gco,t.

Similar computations to §3.3.3 show that

|Lco,t(γ̃)− Lco,0(γ)| ≤
∫ 1

|t|
1
3 K
ρ

∥(Φt)
∗(gco,t)− gco,0∥gco,0 · ∥γ̇∥gco,0 ds. (3.109)

Applying what we know about the curve γ and the estimate (3.101) we get

|Lco,t(γ̃)− Lco,0(γ)| ≤
∫ 1

|t|
1
3 K
ρ

1

2
ρ ds =

1

2
· (ρ− |t|

1
3K). (3.110)

As such, we see that

Lco,t(γ̃) ≤ |Lco,t(γ̃)− Lco,0(γ)|+ Lco,0(γ) ≤
3

2
· (ρ− |t|

1
3K) (3.111)

and so

dco,t

(
p̃, Dt

(
β
t,|t|

1
3K

))
≤ 3

2
· (δ − |t|

1
3K). (3.112)

We can use two of these curves concatenated with an intermediate path in
Dt

(
β
t,|t|

1
3K

)
to connect any two points p̃, q̃ ∈ Dt(βt,δ). Hence combining the

above bound with the diameter bound (3.78) yields

diamco,t

(
Dt(βt,δ)

)
≤ |t|

1
3 · diamco,1

(
D1(β1,K)

)
+ 3 · (δ − |t|

1
3K)

≤
( 1

K
· diamco,1

(
D1(β1,K)

)
+ 3
)
· δ. (3.113)
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We get the following result:

Lemma 3.3.9. Fix K > 0 such that (3.101) holds. For δ > 0 and t with

|t| ∈ (0, δ3

K3 ] there exists a constant C > 0 independent of the choice of δ and
t such that

diamco,t

(
Dt(βt,δ)

)
≤ C · δ. (3.114)

Bounds fo the Fu–Li–Yau Metrics

On the smoothings Xt, the Fu–Li–Yau metrics gFLY,t are only close to scaled
Candelas–de la Ossa metrics gco,t, instead of being exactly equal to them.
Because of this, we require a version of the diameter bound (3.114) for the
Fu–Li–Yau metrics. This will follow by virtue of the estimate

sup
{r≤R0}

∥gFLY,t − cj · gco,t∥gco,t ≤ C · |t|
2
3 (3.115)

near each vanishing sphere from the Local Model Property (FLY SM I) .

Consider a curve γ : [0, 1] → Dt(βt,δ). We compare the length of this path
γ with respect to gFLY,t and c · gco,t.

|LFLY,t(γ)−
√
cj · Lco,t(γ)| ≤

1
√
cj

·
∫ 1

0
∥gFLY,t − cj · gco,t∥gco,t · ∥γ̇∥gco,t ds.

(3.116)

We have a finite number of vanishing spheres and so the values of cj are
bounded. Using the estimate, and ensuring t and δ are such that βt,δ < R0

we see that

|LFLY,t(γ)−
√
c · Lco,t(γ)| ≤ C · |t|

2
3Lco,t(γ). (3.117)

Hence
LFLY,t(γ) ≤ C · (|t|

2
3 + 1) · Lco,t(γ), (3.118)

and so

diamFLY,t

(
Dt(βt,δ)

)
≤ C · (|t|

2
3 + 1) · diamco,t

(
Dt(βt,δ)

)
. (3.119)

Lemma 3.3.10. Fix K > 0 such that (3.101) holds. For sufficiently small

δ > 0 and t with |t| ∈ (0, δ3

K3 ] there exists a constant C > 0 independent of
the choice of δ and t such that

diamFLY,t

(
Dt(βt,δ)

)
≤ C · δ · (δ2 + 1). (3.120)
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Applying the Main Lemma

We now prove an analogue of Lemma 3.3.8 in the case of the of the smooth-
ings for both the Candelas–de la Ossa metrics gco,t and the Fu–Li–Yau met-
rics gFLY,t.

Lemma 3.3.11. For 0 < ϵ < 1, there exists δ > 0 and t0 > 0 such that for
t with |t| ∈ (0, t0), we have

i) diamco,0

(
D0(δ)

)
< ϵ; and

ii) diamco,t

(
Dt(βt,δ)

)
< ϵ.

The result also holds when using the Fu–Li–Yau metrics gFLY,0 and gFLY,t

instead of the Candelas–de la Ossa metrics gco,0 and gco,t.

Proof. As was the case for Lemma 3.3.8, the first condition holds as long as
δ < ϵ

2 . Using either (3.114) or (3.120), we can see that the result holds by

setting t0 =
δ3

K3 as long as δ is sufficiently small.

With the above lemma, we can show the Gromov–Hausdorff convergence of
the metrics on the smoothings by appealing to the Main Lemma (Lemma
3.3.5):

i) Convergence of the local models:(
Dt(βt,R), dco,t

)
→
(
D0(R), dco,0

)
We only have one ODP singularity s for this case. The diameter
estimate for gco,t from Lemma 3.3.11 tells us that for each ϵ > 0, we
can pick the set G = D0(δ) for an appropriately small δ > 0 such that
Lemma 3.3.5 applies.

ii) Convergence of the Fu–Li–Yau balanced metrics:

(X̂, dFLY,t) → (X0, dFLY,0)

Again, using the estimate from Lemma 3.3.11, we see that for ϵ > 0, we
can pick Gj = D0(δj) for appropriately small δj around each singular
point sj . Coupling this with the smooth convergence of the Fu–Li–
Yau metrics on compact sets away from the vanishing spheres and
singularities, we can apply Lemma 3.3.5.
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3.3. The Singular Case

iii) Convergence of the Hermitian Yang–Mills metrics:

(X̂, d̂
Ĥa

) → (X0, dH0)

Recall the uniform equivalence of metrics

C−1 · gFLY,t ≤ Ht ≤ C · gFLY,t (3.121)

from §2.2.3. The uniform estimates of Lemma 3.3.11 then tell us that
for ϵ > 0, there exists δj > 0 for each vanishing sphere and t0 > 0 such
that when |t| ∈ (0, t0),

diamH0

(
D0(δj)

)
< ϵ and diamHt

(
Dt(βt,δj )

))
< ϵ. (3.122)

Applying the Main Lemma (Lemma 3.3.5) yields the result.

By combining the results above results and those at the end of §3.3.3, we
obtain Theorem 3.3.1.
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Chapter 4

The Anomaly Flow

As previously noted, the metrics of Fu–Li–Yau [FLY12] and Collins–Picard–
Yau [CPY24] only partially solve the Hull–Strominger system (1.22) - (1.25).
The missing condition in these constructions was the heterotic Bianchi iden-
tity √

−1∂∂ω − α′
(
tr(Rm ∧ Rm)− tr(F ∧ F )

)
= 0. (4.1)

In this chapter, we discuss an approach to finding solutions to this equation
by geometric flows. In particular, we will show a condition on the slope
parameter α′ that will ensure that the flow can be extended.

4.1 Evolution Equations

In an effort to find solutions to the Hull–Strominger system, Phong–Picard–
Zhang [PPZ18c] have proposed a geometric flows approach using the so-
called Anomaly flow. This is a geometric flow on a Calabi–Yau threefold X
with nowhere-vanishing (3, 0)-form Υ that evolves a Hermitian metric ω by

∂

∂t

(
∥Υ∥ωω2

)
=

√
−1∂∂ω − α′(tr(Rm ∧ Rm)− Φ

)
. (4.2)

Here Φ is a prescibed (2, 2)-form in c2(X) that may evolve with time. By
Chern–Weil Theory, the RHS of the evolution equation is closed and thus
the Anomaly flow preserves the conformally balanced condition.

Remark 4.1.1. In order to solve the full system, we can couple the Anomaly
flow with another flow of Hermitian metrics H on a holomorphic bundle
E → X. In particular, as proposed in [PPZ18c], we may set

H−1 ∂

∂t
H = −ΛωF, (4.3)

and set Φ = tr(F ∧ F ) in the Anomaly flow. Given appropriate initial
conditions, the stationary points of the coupled flow can be checked to satisfy
the Hull–Strominger system for the slope parameter α′.
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4.1. Evolution Equations

Given a geometric flow, we have the usual questions about its short-time
existence and uniqueness, long-time existence, and convergence of solutions.
The short-time existence and uniqueness of the Anomaly flow has been
shown in [PPZ18c], while long-time existence has been shown in various
settings (see [PPZ18a, PPZ18b, PPZ19b, FHP21] and also [Puj21, PU21]
for versions using non-Chern connections). The rest of this chapter will
focus on a general long-time existence result for the flow.

In [PPZ18b], Phong–Picard–Zhang rewrite the evolution equation (4.2) in
terms of the metric g.

Theorem 4.1.2 (Phong–Picard–Zhang [PPZ18b]). Under the Anomaly flow
(4.2), the metric g evolves by

∂

∂t
gpq =

( 1

2∥Υ∥ω

)
·
[
− R̃pq + gαβgrsTprβTαqs

− α′grs
(
R α

[rq βR
β

ps] α − Φrqps

)]
. (4.4)

Here R r
pq s = −∂q(grm∂pgsm) is the Chern curvature tensor, Tkpq = ∂kgpq −

∂pgkq is the torsion tensor, and R̃pq = R k
pq k is (one notion of) the Ricci

curvature.

This can schematically be written as

∂

∂t
g =

( 1

2∥Υ∥ω

)
·
[
Rm+ T ∗ T + α′ ·

(
Rm ∗ Rm+Φ

)]
, (4.5)

where ∗ denotes a finite linear combination of contractions using the metric
g.

The results of Theorem 4 and 5 of [PPZ18b] respectively yield evolution
equations for the curvature and torsion along the Anomaly flow:

∂

∂t
Rm =

( 1

2∥Υ∥ω

)
·
[1
2
∆RRm+H1

+ α′ ·
(
∇∇(Rm ∗ Rm) +H2

)]
, (4.6)

∂

∂t
T =

( 1

2∥Υ∥ω

)
·
[1
2
∆RT +K1 + α′ ·

(
∇(Rm ∗ Rm) +K2

)]
. (4.7)
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Here we have

H1 = ∇∇(T ∗ T ) +∇(T ∗ Rm) +∇(T ∗ Rm)

+ Rm ∗ Rm+∇(T ∗ T ∗ T ) +∇(T ∗ T ∗ T )
+ T ∗ T ∗ Rm+ T ∗ T ∗ T ∗ T , (4.8)

H2 = ∇∇Φ+Rm ∗ Φ+∇(T ∗ Rm ∗ Rm) +∇(T ∗ Rm ∗ Rm)

+ Rm ∗ Rm ∗ Rm+∇(T ∗ Φ) +∇(T ∗ Φ)
+ T ∗ T ∗ Rm ∗ Rm+ T ∗ T ∗ Φ, (4.9)

which involve at most 2 covariant derivatives of T and at most 1 covariant
derivative of Rm.

Similarly, we have

K1 = ∇(T ∗ T ) + T ∗ Rm+ T ∗ T ∗ T , (4.10)

K2 = ∇Φ+ T ∗ Rm ∗ Rm+ T ∗ Φ, (4.11)

which involve at most 1 covariant derivative of T and none of Rm.

By the evolution of the Chern connection, we also have expressions for the
evolution of covariant derivatives of both Rm and T .

∂

∂t
(∇m∇l

Rm)

=
∑

i+j>0

m∑
i=0

l∑
j=0

(∇m−i∇l−j
Rm) ∗

(
∇i∇j

( ∂
∂t
g
))

+∇m∇l

(( 1

2∥Υ∥ω

)
·
[1
2
∆RRm+H1

+ α′ ·
(
∇∇(Rm ∗ Rm) +H2

)])
, (4.12)
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∂

∂t
(∇m∇l

T )

=
∑

i+j>0

m∑
i=0

l∑
j=0

(∇m−i∇l−j
T ) ∗

(
∇i∇j

( ∂
∂t
g
))

+∇m∇l

(( 1

2∥Υ∥ω

)
·
[1
2
∆RT +K1

+ α′ ·
(
∇(Rm ∗ Rm) +K2

)])
. (4.13)

4.2 Integral Shi-Type Estimates

In this section, we work to obtain uniform L∞-estimates for covariant deriva-
tives of Rm and T along the Anomaly flow. To do this, we first assume some
base level of regularity along the flow.

4.2.1 Base Assumptions and Notation

Suppose for k ≥ 1 that these exist positive constants B,C0, C1, . . . , Ck−1

such that

B−1 ≤
( 1

2∥Υ∥ω

)
≤ B, (4.14)

∥T∥, ∥T∥, ∥Rm∥, ∥DT∥, ∥DT∥ ≤ C0, (4.15)

∥DqRm∥, ∥Dq+1T∥, ∥Dq+1T∥ ≤ Cq for 1 ≤ q ≤ k − 1 (4.16)

along the Anomaly flow on the interval [0, τ). Here all norms are taken
with respect to the evolving metric and DqA denotes all combinations of
qth-order covariant derivatives of a tensor A such that:

∥DqA∥2 =
∑

m+l=q

∥∇m∇l
A∥2. (4.17)

Remark 4.2.1. We note that the first assumption (4.14) and the second
assumption (4.15), in conjunction with (4.4) imply that

∥∥ ∂
∂tg
∥∥ is uniformly

bounded along the flow. It follows that the evolving metric g is uniformly
bounded above and below by the initial metric g0. As such, the volume∫
X 1 dvol is also uniformly bounded along the flow.

In the following computations, we assume that the evolving form Φ satisfies
any required regularity conditions for simplicity.
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For the rest of this chapter, we adopt the convention that C denotes a generic
positive constant that may change from line to line and may depend on α′

but does not depend on the time t. Furthermore, all integrals will be taken
with respect to the evolving volume form and as such, we omit the volume
form to reduce clutter.

4.2.2 Estimates on ∥DkRm∥ and ∥Dk+1T∥

Given the assumptions (4.14) - (4.16), we aim to prove the existence of a
positive constant Ck such that

∥DkRm∥, ∥Dk+1T∥, ∥Dk+1T∥ ≤ Ck. (4.18)

We will do this by first obtaining L2p-bounds under appropriate conditions
on the slope parameter α′. To upgrade the L2p-bounds to full-fledged L∞-
bounds, we will also require L2p-bounds on higher-order derivatives of Rm
and T . These will be obtained in the following section (§4.2.3).

From the expression (A.16) and the regularity of T , we see that∥∥∥Dq
( 1

2∥Υ∥ω

)∥∥∥ ≤ C for 0 ≤ q ≤ k + 1. (4.19)

The commutator identity (A.18) also gives that

∥Dk+1T∥ ≤ C + ∥Dk+1T∥, (4.20)

∥Dk+2T∥ ≤ C + C · ∥DkRm∥+ ∥Dk+2T∥. (4.21)

From this, we only need to worry about bounding Rm and T since inequal-
ities for T will follow.

Pointwise Estimates

We begin by working with pointwise bounds as in [PPZ18b, PPZ18c]. The
main difference is that in our setting, the terms involving the slope param-
eter α′ cannot be as easily dealt with as we shall see from the upcoming
computations. Despite this issue, these extra terms can be written as diver-
gences, and we shall integrate by parts to deal with them.

In the ensuing section, we suppose that m+l = k ≥ 2. This is to ensure that
the terms that appear are no more than quadratic in unknown quantities
that we want to bound. We will tackle the case where k = 1 later in §4.3.2.
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Using (4.6) and (4.12) and later applying the CBS Inequality, we can check
that

∂

∂t
∥∇m∇l

Rm∥2

= C ·
∥∥∥ ∂
∂t
g
∥∥∥ · ∥∇m∇l

Rm∥2 + 2Re
〈 ∂
∂t

(∇m∇l
Rm),∇m∇l

Rm
〉

≤ C ·
∥∥∥ ∂
∂t
g
∥∥∥ · ∥∇m∇l

Rm∥2

+
∑

i+j>0

m∑
i=0

l∑
j=0

2Re
〈
(∇m−i∇l−j

Rm) ∗
(
∇i∇j

( ∂
∂t
g
))
,∇m∇l

Rm
〉

+ 2Re
〈
∇m∇l

(( 1

2∥Υ∥ω

)
·H1

)
,∇m∇l

Rm
〉

+ 2α′Re
〈
∇m∇l

(( 1

2∥Υ∥ω

)
·H2

)
,∇m∇l

Rm
〉

+
∑

i+j<k

m∑
i=0

l∑
j=0

2Re
〈(

∇m−i∇l−j
( 1

2∥Υ∥ω

))
∗
(
∇i∇j

(1
2
∆RRm

))
,∇m∇l

Rm
〉

+
∑

i+j<k

m∑
i=0

l∑
j=0

2α′Re
〈(

∇m−i∇l−j
( 1

2∥Υ∥ω

))
∗
(
∇i∇j(∇∇(Rm ∗ Rm)

))
,∇m∇l

Rm
〉

+
( 1

2∥Υ∥ω

)
· 2Re

〈
∇m∇l

(1
2
∆RRm

)
,∇m∇l

Rm
〉

+
( 1

2∥Υ∥ω

)
· 2α′Re

〈
∇m∇l(∇∇(Rm ∗ Rm)

)
,∇m∇l

Rm
〉

≤ C ·
∥∥∥ ∂
∂t
g
∥∥∥ · ∥∇m∇l

Rm∥2︸ ︷︷ ︸
(I)

+
∑

i+j>0

m∑
i=0

l∑
j=0

C ·
∥∥∥∇i∇j

( ∂
∂t
g
)∥∥∥ · ∥∇m∇l

Rm∥︸ ︷︷ ︸
(II)

+ C ·
∥∥∥∇m∇l

(( 1

2∥Υ∥ω

)
·H1

)∥∥∥ · ∥∇m∇l
Rm∥︸ ︷︷ ︸

(III)
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+ C ·
∥∥∥∇m∇l

(( 1

2∥Υ∥ω

)
·H2

)∥∥∥ · ∥∇m∇l
Rm∥︸ ︷︷ ︸

(IV)

+
∑

i+j<k

m∑
i=0

l∑
j=0

C · ∥∇i∇j
(∆RRm)∥ · ∥∇m∇l

Rm∥︸ ︷︷ ︸
(V)

+
∑

i+j<k

m∑
i=0

l∑
j=0

C · ∥∇i∇j
(∇∇Rm)∥ · ∥∇m∇l

Rm∥︸ ︷︷ ︸
(VI)

+
( 1

2∥Υ∥ω

)
· 2Re

〈
∇m∇l

(1
2
∆RRm

)
,∇m∇l

Rm
〉

︸ ︷︷ ︸
(VII)

+
( 1

2∥Υ∥ω

)
· 2α′Re

〈
∇m∇l(∇∇(Rm ∗ Rm)

)
,∇m∇l

Rm
〉

︸ ︷︷ ︸
(VIII)

. (4.22)

We work to bound each of the eight terms.

Terms (I) - (VI) The terms here are relatively well-behaved. In short,
this is because these all have an appropriate amount of covariant derivatives
that can be handled. We recall that

∂

∂t
g =

( 1

2∥Υ∥ω

)
·
[
Rm+ T ∗ T + α′ ·

(
Rm ∗ Rm+Φ

)]
, (4.23)

H1 = ∇∇(T ∗ T ) +∇(T ∗ Rm) +∇(T ∗ Rm)

+ Rm ∗ Rm+∇(T ∗ T ∗ T ) +∇(T ∗ T ∗ T )
+ T ∗ T ∗ Rm+ T ∗ T ∗ T ∗ T , (4.24)

H2 = ∇∇Φ+Rm ∗ Φ+∇(T ∗ Rm ∗ Rm) +∇(T ∗ Rm ∗ Rm)

+ Rm ∗ Rm ∗ Rm+∇(T ∗ Φ) +∇(T ∗ Φ)
+ T ∗ T ∗ Rm ∗ Rm+ T ∗ T ∗ Φ. (4.25)

Using the above and our initial assumptions from §4.2.1, we see that∥∥∥∇i∇j
( ∂
∂t
g
)∥∥∥ ≤

{
C, if i+ j ≤ k − 1; and

C + C · ∥DkRm∥, if i+ j = k.
(4.26)
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As such, we get that
(I) ≤ C · ∥DkRm∥2, (4.27)

(II) ≤ C · ∥DkRm∥+ C · ∥DkRm∥2. (4.28)

As before, we note that H1 and H2 involve at most 2 covariant derivatives
of T and 1 of Rm. From this, we see that∥∥∥∇m∇l

(( 1

2∥Υ∥ω

)
·H1

)∥∥∥ ≤ C + C · ∥DkRm|+ C · ∥Dk+1T∥

+ C · ∥Dk+1Rm∥+ C · ∥Dk+2T∥, (4.29)∥∥∥∇m∇l
(( 1

2∥Υ∥ω

)
·H2

)∥∥∥ ≤ C + C · ∥DkRm|+ C · ∥Dk+1T∥

+ C · ∥Dk+1Rm∥. (4.30)

This gives that

(III) ≤ C · ∥DkRm∥+ C · ∥DkRm|2 + C · ∥DkRm∥ · ∥Dk+1T∥
+ C · ∥DkRm∥ · ∥Dk+1Rm∥+ C · ∥DkRm∥ · ∥Dk+2T∥, (4.31)

(IV) ≤ C · ∥DkRm∥+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1T∥
+ C · ∥DkRm∥ · ∥Dk+1Rm∥. (4.32)

A similar analysis tells us that

(V) ≤ C · ∥DkRm∥+ C · ∥DkRm|2 + C · ∥DkRm∥ · ∥Dk+1Rm∥, (4.33)

(VI) ≤ C · ∥DkRm∥+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1Rm∥. (4.34)

Term (VII) A general method for dealing with this term is to isolate the
highest-order parts while extracting a Laplacian and good negative terms.

Applying the Commutator Identity (A.17), we have

∇m∇l
(∆RRm) = ∆R(∇m∇l

Rm) +

m∑
i=0

l∑
j=0

(∇m−i∇l−j
Rm) ∗ (∇i∇j

Rm)

+

m∑
i=0

l∑
j=0

(∇m−i∇l+1−j
Rm) ∗ (∇i∇j

T )

+

m∑
i=0

l∑
j=0

(∇m+1−i∇l−j
Rm) ∗ (∇i∇j

T ). (4.35)
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This gives( 1

2∥Υ∥ω

)
· 2Re

〈
∇m∇l

(1
2
∆RRm

)
,∇m∇l

Rm
〉

≤
( 1

2∥Υ∥ω

)
· Re ⟨∆R(∇m∇l

Rm),∇m∇l
Rm⟩

+
m∑
i=0

l∑
j=0

C · ∥∇m−i∇l−j
Rm∥ · ∥∇i∇j

Rm∥ · ∥∇m∇l
Rm∥

+
m∑
i=0

l∑
j=0

C · ∥∇m−i∇l+1−j
Rm∥ · ∥∇i∇j

T∥ · ∥∇m∇l
Rm∥

+
m∑
i=0

l∑
j=0

C · ∥∇m+1−i∇l−j
Rm∥ · ∥∇i∇j

T∥ · ∥∇m∇l
Rm∥

≤
( 1

2∥Υ∥ω

)
· Re ⟨∆R(∇m∇l

Rm),∇m∇l
Rm⟩

+ C · ∥DkRm∥+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1Rm∥. (4.36)

One can then check that (since m ≤ k)

2Re ⟨∆R(∇m∇l
Rm),∇m∇l

Rm⟩

= ⟨∆R(∇m∇l
Rm),∇m∇l

Rm⟩+ ⟨∇m∇l
Rm,∆R(∇m∇l

Rm)⟩

= ∆R

(
∥∇m∇l

Rm∥2
)
− 2∥∇m+1∇l

Rm∥2 − 2∥∇m∇l+1
Rm∥2

− 2
(
∥∇∇m∇l

Rm∥2 − ∥∇m∇l+1
Rm∥2

)
≤ ∆R

(
∥∇m∇l

Rm∥2
)
− 2∥∇m+1∇l

Rm∥2 − 2∥∇m∇l+1
Rm∥2

+

m−1∑
i=0

C · ∥∇m∇l+1
Rm∥ · ∥∇iRm∥ · ∥∇m−1−i∇l

Rm∥

+

m−1∑
i=0

C · ∥∇iRm∥2 · ∥∇m−1−i∇l
Rm∥2

≤ ∆R

(
∥∇m∇l

Rm∥2
)
− 2∥∇m+1∇l

Rm∥2 − 2∥∇m∇l+1
Rm∥2

+ C + C · ∥Dk+1Rm∥. (4.37)

60



4.2. Integral Shi-Type Estimates

Combining these together, we get

(VII) ≤ 1

2

( 1

2∥Υ∥ω

)
·∆R

(
∥∇m∇l

Rm∥2
)

−B−1 · ∥∇m+1∇l
Rm∥2 −B−1 · ∥∇m∇l+1

Rm∥2

+ C + C · ∥DkRm∥+ C · ∥Dk+1Rm∥
+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1Rm∥. (4.38)

Term (VIII) This final term has “too many” non-Laplacian covariant
derivatives. In order to deal with this, we rewrite them in preparation for
integration by parts and application of the Divergence Theorem. We keep
track of the constant in front of the terms that are quadratic in the highest-
order since we will want to cancel them out later.

Using the Commutator Identity (A.18), we have that

∇m∇l(∇∇(Rm ∗ Rm)
)
= ∇∇m+1∇l

(Rm ∗ Rm)

+
m∑
i=0

l∑
j=0

(
∇m−i∇l−j

(Rm ∗ Rm)
)
∗ (∇i∇j

Rm). (4.39)

From this, we see that( 1

2∥Υ∥ω

)
· 2α′Re

〈
∇m∇l(∇∇(Rm ∗ Rm)

)
,∇m∇l

Rm
〉

≤
( 1

2∥Υ∥ω

)
· 2α′Re ⟨∇∇m+1∇l

(Rm ∗ Rm),∇m∇l
Rm⟩

+
m∑
i=0

l∑
j=0

C · ∥∇m−i∇l−j
(Rm ∗ Rm)∥ · ∥∇i∇j

Rm∥ · ∥∇m∇l
Rm∥

≤
( 1

2∥Υ∥ω

)
· 2α′Re

(
∇j⟨∇

m+1∇l
(Rm ∗ Rm),∇m∇l

Rm⟩j
)

−
( 1

2∥Υ∥ω

)
· 2α′Re ⟨∇m+1∇l

(Rm ∗ Rm),∇m+1∇l
Rm⟩

+ C · ∥DkRm∥+ C · ∥DkRm∥2

≤
( 1

2∥Υ∥ω

)
· 2α′Re

(
∇j⟨∇

m+1∇l
(Rm ∗ Rm),∇m∇l

Rm⟩j
)

+ C · ∥DkRm∥+ C · ∥Dk+1Rm∥
+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1Rm∥

+ 4a0BC0α
′∥∇m+1∇l

Rm∥2, (4.40)
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where a0 > 1 is a fixed predetermined constant independent of k arising from
the linear combinations obscured by the ∗ contraction notation in (4.6) and
(4.7).

As such, we get

(VIII) ≤ 2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+ C · ∥DkRm∥+ C · ∥Dk+1Rm∥
+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1Rm∥

+ 4a0BC0α
′∥∇m+1∇l

Rm∥2. (4.41)

Combining the Terms If we combine what we have from the terms (I)
- (VIII), we get the pointwise estimate that

∂

∂t
∥∇m∇l

Rm∥2

≤ 1

2

( 1

2∥Υ∥ω

)
·∆R

(
∥∇m∇l

Rm∥2
)

−B−1 · ∥∇m+1∇l
Rm∥2 −B−1 · ∥∇m∇l+1

Rm∥2

+ 2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+ C + C · ∥DkRm∥+ C · ∥Dk+1Rm∥
+ C · ∥DkRm∥2 + C · ∥DkRm∥ · ∥Dk+1T∥
+ C · ∥DkRm∥ · ∥Dk+1Rm∥+ C · ∥DkRm∥ · ∥Dk+2T∥

+ 4a0BC0α
′∥∇m+1∇l

Rm∥2. (4.42)

We have the inequality

∥Dk+1Rm∥2 =
∑

a+b=k+1

∥∇a∇b
Rm∥2

≤
∑

m+l=k

∥∇m+1∇l
Rm∥2 +

∑
m+l=k

∥∇m∇l+1
Rm∥2, (4.43)

Summing over m + l = k and using the Peter–Paul version of Young’s
Inequality

ab ≤ 1

2
ϵ−1a2 +

1

2
ϵb2 for ϵ > 0, (4.44)
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we get that for 0 < ϵ < 1,

∂

∂t
∥DkRm∥2

≤ 1

2

( 1

2∥Υ∥ω

)
·∆R

(
∥DkRm∥2

)
−B−1 · ∥Dk+1Rm∥2

+
∑

m+l=k

2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+ Cϵ−1 ·
(
1 + ∥DkRm∥2 + ∥Dk+1T∥2

)
+
[
Cϵ+ 4a0BC0α

′
]
· ∥Dk+1Rm∥2 + Cϵ · ∥Dk+2T∥2. (4.45)

A similar treatment for covariant derivatives of T yields

∂

∂t
∥Dk+1T∥2

≤ 1

2

( 1

2∥Υ∥ω

)
·∆R

(
∥Dk+1T∥2

)
−B−1 · ∥Dk+2T∥2

+
∑

m′+l′=k+1

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ Cϵ−1 ·
(
1 + ∥DkRm∥2 + ∥Dk+1T∥2

)
+
[
Cϵ+ 2a0BC0α

′
]
·
(
∥Dk+1Rm∥2 + ∥Dk+2T∥2

)
. (4.46)

L2p-Estimates

We now define a convenient test function by setting

Gq = ∥DqRm∥2 + ∥Dq+1T∥2. (4.47)

Summing together (4.45) and (4.46), we get

∂

∂t
Gk ≤ 1

2

( 1

2∥Υ∥ω

)
·∆RGk −B−1 ·Gk+1

+
∑

m+l=k

2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=k+1

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)
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+ Cϵ−1 ·
(
1 +Gk

)
+
[
Cϵ+ 6a0BC0α

′
]
·Gk+1. (4.48)

By integrating and using the above, we see that for p ≥ 3,

∂

∂t

(∫
X
Gp

k

)
≤
∫
X

( ∂
∂t
Gp

k

)
+ C ·

∫
X
Gp

k

≤ p ·
∫
X
Gp−1

k ·
( ∂
∂t
Gk

)
+ C ·

∫
X
Gp

k

≤ p

2
·
∫
X

( 1

2∥Υ∥ω

)
·Gp−1

k · (∆RGk)−B−1p ·
∫
X
Gp−1

k ·Gk+1

+
∑

m+l=k

2α′pRe

(∫
X
Gp−1

k

· ∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=k+1

2α′pRe

(∫
X
Gp−1

k

· ∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ Cϵ−1 ·
∫
X
Gp−1

k ·
(
1 +Gk

)
+
[
Cϵ+ 6a0BC0α

′p
]
·
∫
X
Gp

k ·Gk+1,

(4.49)

where the generic constant C in each line may now also depend on p. The
second term in the first inequality comes from the evolving volume form and
the fact that ∥ ∂

∂tg∥ is bounded along the flow (see Remark 4.2.1).

Remark 4.2.2. We impose the p ≥ 3 condition for now to avoid potentially
dividing by 0 in the future. This is required since some intermediary steps
in our future equations involve terms of the form Gp−3

k (see the penultimate
inequality in (4.53)). The set where Gk vanishes cannot näıvely be removed
as it would result in a boundary component after integration by parts. The
case where p ∈ [1, 3) will be addressed later.

Using the identity

∆RG
p
k = 2p(p− 1) ·Gp−2

k · ∥∇Gk∥2 + p ·Gp−1
k · (∆RGk), (4.50)

we can write the above with an extra negative term.
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∂

∂t

(∫
X
Gp

k

)
≤ 1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p
k)

−B−1p(p− 1) ·
∫
X
Gp−2

k · ∥∇Gk∥2 −B−1p ·
∫
X
Gp−1

k ·Gk+1

+
∑

m+l=k

2α′pRe

(∫
X
Gp−1

k

· ∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=k+1

2α′pRe

(∫
X
Gp−1

k

· ∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ Cϵ−1 ·
∫
X
Gp−1

k ·
(
1 +Gk

)
+
[
Cϵ+ 6a0BC0α

′p
]
·
∫
X
Gp

k ·Gk+1.

(4.51)

By using integration by parts and the Divergence Theorem (A.19), we can
absorb the Laplacian term and divergence terms into the negative ones.

First, we see that

1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p
k)

=
1

2

∫
X
∇i

[( 1

2∥Υ∥ω

)
· gij · ∇jG

p
k

]
− 1

2

∫
X
gij · ∇i

( 1

2∥Υ∥ω

)
· ∇jG

p
k

+
1

2

∫
X
∇j

[( 1

2∥Υ∥ω

)
· gij · ∇iG

p
k

]
− 1

2

∫
X
gij · ∇j

( 1

2∥Υ∥ω

)
· ∇iG

p
k

≤ C ·
∫
X
∥∇Gp

k∥

≤ C ·
∫
X
Gp−1

k · ∥∇Gk∥

≤ Cϵ−1 ·
∫
X
Gp−2

k ·G2
k + Cϵ ·

∫
X
Gp−2

k · ∥∇Gk∥2

= Cϵ−1 ·
∫
X
Gp

k + Cϵ ·
∫
X
Gp−2

k · ∥∇Gk∥2. (4.52)
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Next, using the Divergence Theorem (A.19) and that ∥DkRm∥2 ≤ Gk, we
can write∑

m+l=k

2α′pRe

(∫
X
Gp−1

k

· ∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

=
∑

m+l=k

2α′pRe

(∫
X
∇j

〈
Gp−1

k ·
( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

−
∑

m+l=k

2α′pRe

(∫
X
∇jG

p−1
k

·
〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

≤ C ·
∫
X
Gp−1

k · ∥DkRm∥ · ∥Dk+1(Rm ∗ Rm)∥

+
∑

m+l=k

2a0Bα
′p(p− 1)

·
∫
X
Gp−2

k · ∥∇Gk∥ · ∥∇m∇l
Rm∥ · ∥∇m+1∇l

(Rm ∗ Rm)∥

≤ C ·
∫
X
Gp−1

k · ∥DkRm∥+ C ·
∫
X
Gp−1

k · ∥DkRm∥2

+ C ·
∫
X
Gp−1

k · ∥DkRm∥ · ∥Dk+1Rm∥

+ C ·
∫
X
Gp−2

k · ∥∇Gk∥ · ∥DkRm∥+ C ·
∫
X
Gp−2

k · ∥∇Gk∥ · ∥DkRm∥2

+
∑

m+l=k

4a0BC0α
′p(p− 1)

·
∫
X
Gp−2

k · ∥∇Gk∥ · ∥∇m∇l
Rm∥ · ∥∇m+1∇l

Rm∥

≤ Cϵ−1 ·
∫
X
Gp−1

k + Cϵ−1 ·
∫
X
Gp

k

+ Cϵ ·
∫
X
Gp−1

k · ∥Dk+1Rm∥2 + Cϵ ·
∫
X
Gp−2

k · ∥∇Gk∥2
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+
∑

m+l=k

2a0BC0α
′p(p− 1) ·

∫
X
Gp−3

k · ∥∇Gk∥2 · ∥∇m∇l
Rm∥2

+
∑

m+l=k

2a0BC0α
′p(p− 1) ·

∫
X
Gp−3

k ·G2
k · ∥∇m+1∇l

Rm∥2

≤ Cϵ−1 ·
∫
X
Gp−1

k ·
(
1 +Gk

)
+
[
Cϵ+ 2a0BC0α

′p(p− 1)
]
·
∫
X
Gp−1

k · ∥Dk+1Rm∥2

+
[
Cϵ+ 2a0BC0α

′p(p− 1)
]
·
∫
X
Gp−2

k · ∥∇Gk∥2. (4.53)

Similar methods show that the other divergence term in (4.51) has the same
upper bound. Substituting these in, and using that

p ·Gp−1
k ≤ (p− 1) ·Gp

k + 1, (4.54)

we get

∂

∂t

(∫
X
Gp

k

)
≤ Cϵ−1 ·

∫
X

(
1 +Gp

k

)
+
[
Cϵ+ 4a0BC0α

′p
(
p+

1

2

)
−B−1p

]
·
∫
X
Gp−1

k ·Gk+1

+
[
Cϵ+ 4a0BC0α

′p(p− 1)−B−1p(p− 1)
]
·
∫
X
Gp−2

k · ∥∇Gk∥2. (4.55)

As such, if

α′ <
1

4a0B2C0(p+
1
2)
, (4.56)

then by choosing ϵ = ϵ(k, α′, p) carefully, we can absorb corresponding terms
into the negative ones. This leaves

∂

∂t

(∫
X
Gp

k

)
≤ C + C ·

∫
X
Gp

k, (4.57)

where we have again used that the volume is bounded along the flow. Recall
Grönwall’s Inequality, which states that if

u′(t) ≤ β(t) · u(t) on (a, b),
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then

u(t) ≤ u(a) · exp

(∫ t

a
β(s) ds

)
on [a, b).

By setting u = 1 +
∫
X Gp

k and β = C and applying Grönwall’s Inequality,
we have

Theorem 4.2.3. Let k ≥ 2 and p ≥ 3. Set Gk = ∥DkRm∥2 + ∥Dk+1T∥2.
Given the assumptions (4.14) - (4.16), if

α′ <
1

4a0B2C0(p+
1
2)
, (4.58)

then there exists some constant Λp = Λp(k, α
′) > 0 such that(∫

X
Gp

k(t)

)
≤

(
1 +

∫
X
Gp

k(0)

)
· eΛpt <

(
1 +

∫
X
Gp

k(0)

)
· eΛpτ . (4.59)

That is,
∫
X Gp

k(t) is uniformly bounded along the flow.

In particular, after taking a 2p-th root, we get that both(∫
X
∥DkRm(t)∥2p

) 1
2p

and

(∫
X
∥Dk+1T (t)∥2p

) 1
2p

(4.60)

are uniformly bounded along the Anomaly flow.

Using the uniform boundedness of the volume, we can retrieve the L2p-
bounds for p ∈ [1, 3) via Hölder’s Inequality.

Corollary 4.2.4. Let k ≥ 2 and p ∈ [1, 3). Set Gk = ∥DkRm∥2+∥Dk+1T∥2.
Given the assumptions (4.14) - (4.16), if

α′ <
1

14a0B2C0
, (4.61)

then
∫
X Gp

k(t) and both(∫
X
∥DkRm(t)∥2p

) 1
2p

and

(∫
X
∥Dk+1T (t)∥2p

) 1
2p

(4.62)

are uniformly bounded along the Anomaly flow.
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4.2.3 Estimates on ∥Dk+1Rm∥ and ∥Dk+2T∥

As mentioned earlier, we require L∞-bounds instead of the weaker L2p-
bounds from the previous section. To achieve this, we appeal to an argument
of Hamilton [Ham82] and first find L2p-bounds on higher-order derivatives
under the same initial assumptions. This will allow us to appeal to the
Sobolev Embedding Theorem in order to recover L∞-bounds.

For this section, we assume that m + l = k ≥ 3. As in §4.2.2, this is to
ensure that terms are at most quadratic in unknowns. The other cases are
deferred to §4.3.1 and §4.3.2.

Recall the test function Gq defined in (4.47). In an analogous manner to
§4.2.2, we can check that under the assumptions (4.14) - (4.16), we get the
pointwise inequality

∂

∂t
Gk+1 ≤

1

2

( 1

2∥Υ∥ω

)
·∆RGk+1 −B−1 ·Gk+2

+
∑

m+l=k+1

2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=k+2

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ C(ϵ′)−1 ·
(
1 +Gk +Gk+1

)
+
[
Cϵ′ + 6a0BC0α

′
]
·Gk+2 (4.63)

for 0 < ϵ′ < 1.

Integration shows that for p ≥ 3,

∂

∂t

(∫
X
Gp

k+1

)
≤ 1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p
k+1)

−B−1p(p− 1) ·
∫
X
Gp−2

k+1 · ∥∇Gk+1∥2 −B−1p ·
∫
X
Gp−1

k+1 ·Gk+2

+
∑

m+l=k+1

2α′pRe

(∫
X
Gp−1

k+1

· ∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)
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+
∑

m′+l′=k+2

2α′pRe

(∫
X
Gp−1

k+1

· ∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ C(ϵ′)−1 ·
∫
X
Gp−1

k+1 ·
(
1 +Gk +Gk+1

)
+
[
Cϵ′ + 6a0BC0α

′p
]
·
∫
X
Gp

k+1 ·Gk+2. (4.64)

As in the previous section, the Laplacian term can be absorbed by the other
terms

1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p
k+1)

≤ C(ϵ′)−1 ·
∫
X
Gp

k+1 + Cϵ′ ·
∫
X
Gp−2

k+1 · ∥∇Gk+1∥2. (4.65)

Similar computations show that the divergence terms can together be bound
above by

C(ϵ′)−1 ·
∫
X
Gp−1

k+1 ·
(
1 +Gk +Gk+1

)
+
[
Cϵ′ + 4a0BC0α

′p(p− 1)
]
·
∫
X
Gp−1

k ·Gk+2

+
[
Cϵ′ + 4a0BC0α

′p(p− 1)
]
·
∫
X
Gp−2

k+1 · ∥∇Gk+1∥2. (4.66)

In tandem with (4.64), we have

∂

∂t

(∫
X
Gp

k+1

)
≤ C(ϵ′)−1 ·

∫
X

(
1 +Gp

k +Gp
k+1

)
+
[
Cϵ′ + 4a0BC0α

′p
(
p+

1

2

)
−B−1p

]
·
∫
X
Gp−1

k+1 ·Gk+2

+
[
Cϵ′ + 4a0BC0α

′p(p− 1)−B−1p(p− 1)
]
·
∫
X
Gp−2

k+1 · ∥∇Gk+1∥2,

(4.67)
where we have also used that by Young’s Inequality

p ·Gp−1
k+1 ·Gk ≤ (p− 1) ·Gp

k+1 +Gp
k, (4.68)
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and
p ·Gp−1

k+1 ≤ (p− 1) ·Gp
k+1 + 1. (4.69)

If α′ is sufficiently small, then ϵ′ = ϵ′(k, α′, p) can be chosen such that

∂

∂t

(∫
X
Gp

k+1

)
≤ C ·

∫
X
1 + C ·

∫
X
Gp

k + C ·
∫
X
Gp

k+1. (4.70)

By our assumptions, the volume is uniformly bounded along the flow. Fur-
ther, by Theorem 4.2.3 and Corollary 4.2.4, so is

∫
X Gp

k. We conclude the
following:

Corollary 4.2.5. Let k ≥ 3 and Gk+1 = ∥Dk+1Rm∥2+∥Dk+2T∥2. Suppose
the assumptions (4.14) - (4.16) hold.

i) If p ≥ 3 and

α′ <
1

4a0B2C0(p+
1
2)
, (4.71)

then there exists some constant Λ′
p = Λ′

p(k, α
′) > 0 such that∫

X
Gp

k+1(t) ≤

(
1 +

∫
X
Gp

k+1(0)

)
eΛ

′
pt <

(
1 +

∫
X
Gp

k+1(0)

)
eΛ

′
pτ .

(4.72)
That is,

∫
X Gp

k+1(t) is uniformly bounded along the flow.

In particular, we get that both(∫
X
∥Dk+1Rm(t)∥2p

) 1
2p

and

(∫
X
∥Dk+2T (t)∥2p

) 1
2p

(4.73)

are bounded along the Anomaly flow;

ii) If instead p ∈ [1, 3) and

α′ <
1

14a0B2C0
, (4.74)

then
∫
X Gp

k+1(t) and both(∫
X
∥Dk+1Rm(t)∥2p

) 1
2p

and

(∫
X
∥Dk+2T (t)∥2p

) 1
2p

(4.75)

are uniformly bounded along the Anomaly flow.

71



4.2. Integral Shi-Type Estimates

4.2.4 Sobolev Embedding and Induction

Recall our base assumptions from §4.2.1: for some k ≥ 1 there exist positive
constants B,C0, C1, . . . , Ck−1 such that along the Anomaly flow on [0, τ)

B−1 ≤
( 1

2∥Υ∥ω

)
≤ B, (4.76)

∥T∥, ∥T∥, ∥Rm∥, ∥DT∥, ∥DT∥ ≤ C0, (4.77)

∥DqRm∥, ∥Dq+1T∥, ∥Dq+1T∥ ≤ Cq for 1 ≤ q ≤ k − 1. (4.78)

Recall also that a0 is a predetermined constant from our expressions (4.6)
and (4.7) that is inherent to the Anomaly flow.

Theorem 4.2.3 and Corollaries 4.2.4 and 4.2.5 have shown that if k ≥ 3,
p ≥ 3, and if

α′ <
1

4a0B2C0(p+
1
2)
, (4.79)

then each of

∥DkRm∥L2p(X), ∥Dk+1T∥L2p(X), ∥Dk+1Rm∥L2p(X), ∥Dk+2T∥L2p(X) (4.80)

are bounded uniformly in t along the Anomaly flow.

Suppose this holds for some p with 2p > n = 6. The Sobolev Embedding
Theorem on DkRm and Dk+1T then provides L∞-bounds on DkRm and
Dk+1T uniform in t along the flow. (See the paragraphs following Lemma
14.3 and also Lemma 14.4 of [Ham82] for more details.) That is, there exists
some Ck such that

∥DkRm∥, ∥Dk+1T∥, ∥Dk+1T∥ ≤ Ck. (4.81)

Importantly, the condition (4.79) on the slope parameter α′ does not de-
pend on k and so we can induct on k to obtain L∞-bounds for ∥DqRm∥ and
∥Dq+1T∥ for each q ≥ 3. We thus have

Corollary 4.2.6. Suppose that the assumptions (4.14) - (4.16) hold for
k = 3. If

α′ <
1

14a0B2C0
, (4.82)

then there exist positive constants Cq for q ≥ 3 such that

∥DqRm∥, ∥Dq+1T∥, ∥Dq+1T∥ ≤ Cq (4.83)

along the Anomaly flow on t ∈ [0, τ).
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Remark 4.2.7. We note that the constants Cq for q ≥ 3 from the previous
corollary depend on τ , the initial metric g0, the slope parameter α′, and the
initial bounds B,C0, C1, C2.

4.3 Lowering the Base Assumptions

We now aim to lower the initial value of k in Corollary 4.2.6. To achieve the
k = 2 case, we only need to establish the higher-order estimates of §4.2.3.
The k = 1 case requires more work since the estimates on ∥DkRm∥ and
∥Dk+1T∥ also need to be reproven.

4.3.1 The k = 2 Case

The procedure in this case is fairly similar to before as we have the estimates
and the result of Theorem 4.2.3 as a starting point.

Analogous computations to those in §4.2.2 show that

∂

∂t
G3 ≤

1

2

( 1

2∥Υ∥ω

)
· (∆RG3)−B−1 ·G4

+
∑

m+l=3

2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=4

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ C(ϵ′) ·
(
1 +G2 + ∥D2Rm∥4 +G3

)
+
[
Cϵ′ + 6a0BC0α

′
]
·G4.

(4.84)

The main difference between this case and the k ≥ 3 case is that the term

⟨D4(Rm ∗ Rm), D4Rm⟩ ≤ C · ∥D4Rm∥2 + C · ∥D3Rm∥ · ∥D4Rm∥
+ C · ∥D2Rm∥2 · ∥D4Rm∥ (4.85)

is bounded by a term that is cubic in the unknowns ∥D2Rm∥, ∥D3Rm∥, and
∥D4Rm∥. After applying Young’s Inequality, the above can be bounded by

⟨D4(Rm ∗ Rm), D4Rm⟩ ≤ C(ϵ′)−1 · ∥D2Rm∥4 + C(ϵ′)−1 · ∥D3Rm∥2

+ Cϵ′ · ∥D4Rm∥2,
(4.86)

which is how the ∥D2Rm∥4 appears in (4.84).
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Using that ∥D2Rm∥4 ≤ G2
2, we see that for p ≥ 3,

∂

∂t

(∫
X
Gp

3

)
≤ 1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p
3)

−B−1p ·
∫
X
Gp−1

3 ·G4 −B−1p(p− 1) ·
∫
X
Gp−2

3 · ∥∇G3∥2

+
∑

m+l=3

2α′pRe

(∫
X
Gp−1

3

· ∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=4

2α′pRe

(∫
X
Gp−1

3

· ∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ C(ϵ′)−1 ·
∫
X
Gp−1

3 ·
(
1 +G2 +G2

2 +G3

)
+
[
Cϵ′ + 6a0BC0α

′p
]
·
∫
X
Gp−1

3 ·G4. (4.87)

The Laplacian term is again well-behaved for our purposes

1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p
3)

≤ C(ϵ′) ·
∫
X
Gp

3 + Cϵ′ ·
∫
X
Gp−2

3 · ∥∇G3∥2. (4.88)

Further, the inner product terms can be bounded by

C(ϵ′)−1 ·
∫
X
Gp−1

3 ·
(
1 +G2

2 +G3

)
+
[
Cϵ′ + 4a0BC0α

′p(p− 1)
]
·
∫
X
Gp−1

3 · ∥D4Rm∥2

+
[
Cϵ′ + 4a0BC0α

′p(p− 1)
]
·
∫
X
Gp−2

3 · ∥∇G3∥2. (4.89)
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As before, we can apply Young’s Inequality to get that

∂

∂t

(∫
X
Gp

3

)
≤ C(ϵ′)−1 ·

∫
X

(
1 +Gp

2 +G2p
2 +Gp

3

)
+
[
Cϵ′ + 4a0BC0α

′p
(
p+

1

2

)
−B−1p

]
·
∫
X
Gp−1

3 ·G4

+
[
Cϵ′ + 4a0BC0α

′p(p− 1)−B−1p(p− 1)
]
·
∫
X
Gp−2

3 · ∥∇G3∥2. (4.90)

Taking note that we also need
∫
X G2p

2 to be uniformly bounded, we then
conclude the following from Theorem 4.2.3 and Corollaries 4.2.4 and 4.2.5:

Corollary 4.3.1. Set k = 2 and G3 = ∥D3Rm∥2 + ∥D4Rm∥2. Suppose the
assumptions (4.14) - (4.16) hold.

i) If p ≥ 3 and

α′ <
1

4a0B2C0(2p+
1
2)
, (4.91)

then there exists some constant Λ′
p = Λ′

p(k, α
′) > 0 such that∫

X
Gp

3(t) ≤

(
1 +

∫
X
Gp

3(0)

)
eΛ

′
pt <

(
1 +

∫
X
Gp

3(0)

)
eΛ

′
pτ . (4.92)

That is,
∫
X Gp

3(t) is uniformly bounded along the flow.

In particular, we get that both(∫
X
∥D3Rm(t)∥2p

) 1
2p

and

(∫
X
∥D4T (t)∥2p

) 1
2p

(4.93)

are bounded along the Anomaly flow;

ii) If instead p ∈ [1, 3) and

α′ <
1

26a0B2C0
, (4.94)

then
∫
X Gp

3(t) and both(∫
X
∥D3Rm(t)∥2p

) 1
2p

and

(∫
X
∥D4T (t)∥2p

) 1
2p

(4.95)

are uniformly bounded along the Anomaly flow.
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Corollary 4.3.2. Suppose that the assumptions (4.14) - (4.16) hold for
k = 2. If

α′ <
1

26a0B2C0
, (4.96)

then there exist positive constants Cq for q ≥ 2 such that

∥DqRm∥, ∥Dq+1T∥, ∥Dq+1T∥ ≤ Cq (4.97)

along the Anomaly flow on t ∈ [0, τ).

As before, we see that these constants Cq for q ≥ 2 will depend on g0, α
′,

B, C0, and C1.

4.3.2 The k = 1 Case

We now aim to show the case when k = 1. As previously mentioned, this
case is more complex as the estimates on ∥DkRm∥ and ∥Dk+1T∥ also need
to be reproven.

Estimates on ∥DRm∥ and ∥D2T∥

As before, we can check that

∂

∂t

(
∥DRm∥2 + ∥D2T∥2

)
≤ 1

2
·
( 1

2∥Υ∥ω

)
·∆R

(
∥DRm∥2 + ∥D2T∥2

)
−B−1p ·

(
∥D2Rm∥2 + ∥D3T∥2

)
+
∑

m+l=1

2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=2

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ Cϵ−1 ·
(
1 +

(
∥DRm∥2 + ∥D2T∥2

))
+
[
Cϵ+ 10a0Bα

′
]
· ∥DRm∥4

+
[
Cϵ+ 6a0BC0α

′ + 4a0Bα
′
]
·
(
∥D2Rm∥2 + ∥D3T∥2

)
. (4.98)

As expected, the quartic term ∥DRm∥4 appears, and so we cannot use the
same test function as before. To compensate for this term, we use that

∂

∂t

(
∥Rm∥2 + ∥DT∥2

)
≤ 1

2
·
( 1

2∥Υ∥ω

)
·∆R

(
∥Rm∥2 + ∥DT∥2

)
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−B−1p ·
(
∥DRm∥2 + ∥D2T∥2

)
+ 2α′Re

(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇(Rm ∗ Rm)

)
,Rm

〉j)
+

∑
m′+l′=1

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

+ Cϵ−1 · 1 +
[
Cϵ+ 6a0BC0α

′
]
·
(
∥DRm∥2 + ∥D2T∥2

)
(4.99)

and incorporate it into our test function.

Let µ > 0 be a constant to be determined later. We consider a test function
of the form

G =
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ

]
·
(
∥DRm∥2 + ∥D2T∥2

)
= (α′ ·G0 + µ) ·G1. (4.100)

Using the two previous calculations, we have

∂

∂t
G = α′ · ∂

∂t

(
∥Rm∥2 + ∥DT∥2

)
·
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)
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]
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∂t
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)
=

1

2
·
( 1

2∥Υ∥ω

)
· α′ ·

(
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)
·∆R

(
∥Rm∥2 + ∥DT∥2

)
+

1

2
·
( 1

2∥Υ∥ω

)
·
[
α′ ·

(
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)
+ µ

]
·∆R

(
∥DRm∥2 + ∥D2T∥2

)
−B−1α′ ·

(
∥DRm∥2 + ∥D2T∥2

)
−B−1 ·

[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ

]
·
(
∥D2Rm∥2 + ∥D3T∥2

)
+ 2Re (A) + 2Re (B)

+ Cϵ−1α′ ·
(
∥DRm∥2 + ∥D2T∥2

)
+ Cϵ−1 ·

[
α′ ·

(
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)
+ µ

]
·
(
1 + ∥DRm∥2 + ∥D2T∥2

)
+
[
Cϵ+ 6a0BC0α

′
]
· α′ ·

(
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+
[
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′
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·
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(
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)
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]
·
(
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)2
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+
[
Cϵ+ 6a0BC0α

′ + 4a0Bα
′
]
·
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ

]
·
(
∥D2Rm∥2 + ∥D3T∥2

)
, (4.101)

where we have used that ∥DRm∥4 ≤
(
∥DRm∥2 + ∥D2T∥2

)2
as necessary.

In the above, the terms (A) and (B) are given by

(A) = (α′)2 ·
(
∥DRm∥2 + ∥D2T∥2

)
·
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇(Rm ∗ Rm)

)
,Rm

〉j)
+

∑
m′+l′=1

(α′)2 ·
(
∥DRm∥2 + ∥D2T∥2

)
·
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

, (4.102)

(B) =
∑

m+l=1

α′ ·
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ

]
·
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=2

α′ ·
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ

]
·
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

. (4.103)

By further grouping terms and inflating constants, while noting that α′
(
∥Rm∥2+

∥DT∥2
)
+ µ ≤ 2C2

0 + µ, we get

∂

∂t
G ≤ 1

2
·
( 1

2∥Υ∥ω

)
· (∆RG)

−B−1α′
(
∥DRm∥2 + ∥D2T∥2

)2
−B−1µ ·

(
∥D2Rm∥2 + ∥D3T∥2

)
+
( 1

2∥Υ∥ω

)
· 2α′Re

〈
∇
(
∥Rm∥2 + ∥DT∥2

)
,∇
(
∥DRm∥2 + ∥D2T∥2

〉
+ 2Re (A) + 2Re (B) + Cϵ−1 ·

(
1 +G

)

78



4.3. Lowering the Base Assumptions

+
[
Cϵ+ 20a0BC

2
0 (α

′)2 + 6a0BC0(α
′)2 + 10a0Bα

′µ
]

·
(
∥DRm∥2 + ∥D2T∥2

)2
+
[
Cϵ+ 12a0BC

3
0 (α

′)2 + 8a0BC
2
0 (α

′)2 + 6a0BC0α
′µ+ 4a0Bα

′µ
]

·
(
∥D2Rm∥2 + ∥D3T∥2

)
. (4.104)

Note here that the generic constant C may depend on µ as well.

From this, it follows that for p ≥ 3, that

∂

∂t

(∫
X
Gp

)
≤ 1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p)−B−1p(p− 1)

∫
X
Gp−2 · ∥∇G∥2

−B−1α′p

∫
X
Gp−1 ·

(
∥DRm∥2 + ∥D2T∥2

)2
−B−1µp

∫
X
Gp−1 ·

(
∥D2Rm∥2 + ∥D3T∥2

)
+ 2pα′Re

(∫
X
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( 1

2∥Υ∥ω

)
·
〈
∇
(
∥Rm∥2 + ∥DT∥2

)
,∇
(
∥DRm∥2 + ∥D2T∥2

)〉)

+ 2pRe

(∫
X
Gp−1 · (A)

)
+ 2pRe

(∫
X
Gp−1 · (B)

)

+ Cϵ−1 ·
∫
X
Gp−1 ·

(
1 +G

)
+
[
Cϵ+ 20a0BC

2
0 (α

′)2p+ 6a0BC0(α
′)2p+ 10a0Bα

′µp
]

·
∫
X
Gp−1 ·

(
∥DRm∥2 + ∥D2T∥

)2
+
[
Cϵ+ 12a0BC

3
0 (α

′)2p+ 8a0BC
2
0 (α

′)2p+ 6a0BC0α
′µp+ 4a0Bα

′µp
]

·
∫
X
Gp−1 ·

(
∥D2Rm∥2 + ∥D3T∥2

)
. (4.105)

As seen in previous sections, the Laplacian term can be absorbed into the
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other terms
1

2
·
∫
X

( 1

2∥Υ∥ω

)
· (∆RG

p)

≤ Cϵ−1 ·
∫
X
Gp + Cϵ ·

∫
X
Gp−2 · ∥∇G∥2. (4.106)

In preparation for dealing with the upcoming terms, we note that by the
(Ricci) Commutator Identity (A.18), we have∥∥∇∥DRm∥2

∥∥ ≤
∥∥∇⟨∇Rm,∇Rm⟩

∥∥+ ∥∥∇⟨∇Rm,∇Rm⟩
∥∥

≤ ∥∇Rm∥ · ∥∇2Rm∥+ |∇Rm∥∥∇∇Rm∥

+ ∥∇Rm∥ · ∥∇∇Rm∥+ ∥∇Rm∥ · ∥∇2
Rm∥

≤ C · ∥Rm∥ · ∥DRm∥+ 4∥DRm∥ · ∥D2Rm∥. (4.107)

Likewise, we have∥∥∇∥D2T∥2
∥∥ ≤

∥∥∇⟨∇2T,∇2T ⟩
∥∥+ ∥∥∇⟨∇∇T,∇∇T ⟩

∥∥+ ∥∇⟨∇2
T,∇2

T ⟩
∥∥

≤ C · ∥DT∥ · ∥D2T∥+ C · ∥DRm∥ · ∥D2T∥
+ 6∥D2T∥ · ∥D3T∥,

(4.108)∥∥∇∥Rm∥2
∥∥ ≤ 2∥Rm∥ · ∥DRm∥, (4.109)∥∥∇∥DT∥2

∥∥ ≤ C · ∥Rm∥ · ∥DT∥+ 4∥DT∥ · ∥D2T∥. (4.110)

As before, we keep track of the coefficients on the highest-order terms.

The inner product term following the negative terms in (4.105) is bounded
by

2pα′Re

(∫
X
Gp−1 ·

( 1

2∥Υ∥ω

)
·
〈
∇
(
∥Rm∥2 + ∥DT∥2

)
,∇
(
∥DRm∥2 + ∥D2T∥2

)〉)

≤ 2Bα′p ·
∫
X
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(
C · ∥Rm∥ · ∥DT∥
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)

·
(
C · ∥Rm∥ · ∥DRm∥+ C · ∥DT∥ · ∥D2T∥+ C · ∥DRm∥ · ∥D2T∥

+ 4∥DRm∥ · ∥D2Rm∥+ 6∥D2T∥ · ∥D3T∥
)
. (4.111)
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In the above, those terms not involving the generic constant C are the ones
that contribute to the highest-order terms. We apply Young’s Inequality to
the other terms to get

2α′pRe
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X
Gp−1 ·
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2∥Υ∥ω
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·
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)
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∫
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)
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∫
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(
∥DRm∥2 + ∥D2T∥2
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+ Cϵ ·

∫
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(
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+

1

8
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∫
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+
1

8
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∫
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)
. (4.112)

It remains to deal with the terms involving (A) and (B). For part of the
(A) term, we have
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)
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≤ C ·
∫
X
Gp−1 ·

(
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)
· ∥DRm∥
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2
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)
. (4.113)

We apply Young’s Inequality to the terms in each integral and keep track
of the coefficients on the highest-order contributions in the third integral,
while absorbing the rest into “good” terms with the generic constant C.
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+ 20a0BC
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The other parts of the (A) term have similar bounds and so
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)
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∫
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. (4.115)

For the (B) term, we check that
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(4.116)

A similar computation to the (A) term then gives that
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where we have again used that α′ ·
(
∥Rm∥2 + ∥DT∥2

)
+ µ ≤ 2C2

0 + µ.
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The other parts of the (B) term have similar bounds and so we have

2pRe

(∫
X
Gp−1 · (B)

)

≤ Cϵ−1 ·
∫
X

(
Gp−1 +Gp

)
+ 10a0Bα

′p(p− 1) ·
∫
X
Gp−2 · ∥∇G∥2

+
[
Cϵ+ 20a0BC

2
0 (α

′)2p(p− 1) + 60a0BC
2
0 (α

′)2p+ 80a0BC
2
0 (α

′)2p

+ 10a0Bα
′µp(p− 1)

]
·
∫
X
Gp−1 ·

(
∥DRm∥2 + ∥D2T∥2

)2
+
[
Cϵ+ 20a0BC

4
0 (α

′)2p(p− 1) + 60a0BC
2
0 (α

′)2p

+ 10a0BC
2
0α

′µp(p− 1)
]
·
∫
X
Gp−1 ·

(
∥D2Rm∥2 + ∥D3T∥2

)
. (4.118)

Combining everything together, we get

∂

∂t

(∫
X
Gp

)
≤ Cϵ−1 ·

∫
X

(
1 +Gp

)
+
[
Cϵ+ 6a0BC

2
0 (α

′)2µ−1p(p− 1) + 10a0Bα
′p(p− 1)

−B−1p(p− 1)
]
·
∫
X
Gp−2 · ∥∇G∥2

+
[
Cϵ+ 140a0BC

2
0 (α

′)2p+ 26a0BC
2
0 (α

′)2p(p− 1) + 86a0BC0(α
′)2p

+ 10a0Bα
′µp2 − 1

2
B−1α′p

]
·
∫
X
Gp−1 ·

(
∥DRm∥2 + ∥D2T∥2

)2
+
[
Cϵ+ 20a0BC

4
0 (α

′)2p(p− 1) + 8320B3C2
0α

′p+ 12a0BC
3
0 (α

′)2p

+ 128a0BC
2
0 (α

′)2p+ 10a0BC
2
0α

′µp(p− 1) + 6a0BC0α
′µp

+ 4a0Bα
′µp−B−1µp

]
·
∫
X
Gp−1 ·

(
∥D2Rm∥2 + ∥D3T∥2

)
. (4.119)

Thus, reading off coefficients, we see that if

6a0BC
2
0 (α

′)2µ−1 + 10a0Bα
′ < B−1, (4.120)

140a0BC
2
0α

′+26a0BC
2
0α

′(p−1)+86a0BC0α
′+10a0Bµp <

1

2
B−1, (4.121)
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20a0BC
4
0 (α

′)2(p− 1) + 8320B3C2
0α

′

+ 12a0BC
3
0 (α

′)2 + 128a0BC
2
0 (α

′)2

+ 10a0BC
2
0α

′µ(p− 1) + 6a0BC0α
′µ+ 4a0Bα

′µ < B−1µ, (4.122)

then we can absorb the corresponding terms into the negative ones.

We see that if

α′ = O
(
a−1
0 B−6max(1, C0)

−2p−1
)
and µ = O(a−1

0 B−2p−1), (4.123)

then the three inequalities could hold.

To this end, we get that if

α′ <
1

106a0B6max(1, C0)2p
, (4.124)

then by picking

µ =
1

100a0B2p
, (4.125)

we can satisfy the inequalities (4.120) - (4.122) and can then choose ϵ =
ϵ(k, α′, p, µ) > 0 such that

∂

∂t

(∫
X
Gp

)
≤ C + C ·

∫
X
Gp. (4.126)

As a consequence of Grönwall’s Inequality again, we get

Theorem 4.3.3. Let k = 1 and set Gq = ∥DqRm∥2 + ∥Dq+1T∥2. Suppose
the assumptions (4.14) - (4.16) hold and set

G =
[
α′ ·

(
∥Rm∥2 + ∥D2T∥2

)
+ µ

]
·
(
∥DRm∥2 + ∥D2T∥2

)
= (α′ ·G0 + µ) ·G1 (4.127)

for some µ > 0.

i) If p ≥ 3 and

α′ <
1

106a0B6max(1, C0)2p
, (4.128)

then for

µ =
1

100a0B2p
(4.129)
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there exists some constant Λp = Λp(k, α
′) > 0 such that∫

X
Gp(t) ≤

(
1 +

∫
X
Gp(0)

)
eΛpt <

(
1 +

∫
X
Gp(0)

)
eΛpτ . (4.130)

That is,
∫
X Gp(t) is uniformly bounded along the flow.

In particular, we get that
∫
X Gp

1(t) and both(∫
X
∥DRm(t)∥2p

) 1
2p

and

(∫
X
∥D2T (t)∥2p

) 1
2p

(4.131)

are bounded along the Anomaly flow;

ii) If instead p ∈ [1, 3) and

α′ <
1

3 · 106a0B6max(1, C0)2
, (4.132)

then for

µ =
1

300a0B2
, (4.133)

the function
∫
X Gp(t) and also

∫
X Gp

1(t) and both(∫
X
∥DRm(t)∥2p

) 1
2p

and

(∫
X
∥D2T (t)∥2p

) 1
2p

(4.134)

are uniformly bounded along the Anomaly flow.

Estimates on ∥D2Rm∥ and ∥D3T∥

For the higher-order estimates, one can check that

∂

∂t

(
∥D2Rm∥2 + ∥D3T∥2

)
≤ 1

2
·
( 1

2∥Υ∥ω

)
·∆R

(
∥D2Rm∥2 + ∥D3T∥2

)
−B−1 ·

(
∥D3Rm∥2 + ∥D4T∥2

)
+
∑

m+l=2

2α′Re
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm),∇m∇l
Rm
〉j)
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+
∑

m′+l′=3

2α′Re
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm),∇m′∇l′
T
〉i)

+ C(ϵ′)−1 ·
(
1 +

(
∥DRm∥2 + ∥D2T∥2

)
+
(
∥DRm∥2 + ∥D2T∥2

)2
+
(
∥D2Rm∥2 + ∥D3T∥2

))
+
[
Cϵ′ + 42a0Bα

]
·
(
∥DRm||2 + ∥D2T∥2

)
·
(
∥D2Rm∥2 + ∥D3T∥2

)
+
[
Cϵ′ + 6a0BC0α

′ + 4a0Bα
′
]
·
(
∥D3Rm∥2 + ∥D4T∥2

)
. (4.135)

We choose a similar test function this time and set

G′ =
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ′

]
·
(
∥D2Rm∥2 + ∥D3T∥2

)
= (α′ ·G0 + µ′) ·G2, (4.136)

where µ′ > 0 is a constant to be determined later. Analogous computations
to before show that for 0 < ϵ′ < 1,

∂

∂t
G′ ≤ 1

2
·
( 1

2∥Υ∥ω

)
· (∆RG

′)

−B−1α′ ·
(
∥DRm∥2 + ∥D2T∥2

)
·
(
∥D2Rm∥2 + ∥D3T∥2

)
−B−1µ′ ·

(
∥D3Rm∥2 + ∥D4T∥2

)
+
( 1

2∥Υ∥ω

)
· 2α′

· Re
〈
∇
(
∥Rm||2 + ∥DT∥2

)
,∇
(
∥D2Rm∥2 + ∥D3T∥2

)〉
+ 2Re (A′) + 2Re (B′) + C(ϵ′)−1 ·

(
1 +G1 +G2

1 +G′
)

+
[
Cϵ′ + 6a0BC0(α

′)2 + 84a0BC
2
0 (α

′)2 + 42a0Bα
′µ′
]

·
(
∥DRm∥2 + ∥D2T∥2

)
·
(
∥D2Rm∥2 + ∥D3T∥2

)
+
[
Cϵ′ + 12a0BC

3
0 (α

′)2 + 8a0BC
2
0 (α

′)2 + 6a0BC0α
′µ′

+ 4a0Bα
′µ′
]
·
(
∥D3Rm∥2 + ∥D4T∥2

)
, (4.137)
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where the terms (A’) and (B’) are given by

(A′) = (α′)2 ·
(
∥D2Rm∥2 + ∥D3T∥2

)
·
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇(Rm ∗ Rm)

)
,Rm

〉j)
+

∑
m′+l′=1

(α′)2 ·
(
∥D2Rm||2 + ∥D3T∥2

)
·
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

, (4.138)

(B′) =
∑

m+l=2

α′ ·
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ′

]
·
(
∇j

〈( 1

2∥Υ∥ω

)
·
(
∇m+1∇l

(Rm ∗ Rm)
)
,∇m∇l

Rm
〉j)

+
∑

m′+l′=3

α′ ·
[
α′ ·

(
∥Rm∥2 + ∥DT∥2

)
+ µ′

]
·
(
∇i

〈( 1

2∥Υ∥ω

)
·
(
∇m′∇l′

(Rm ∗ Rm)
)
,∇m′∇l′

T
〉i)

. (4.139)

Proceeding as before, we get that for p ≥ 3,

∂

∂t

(∫
X
(G′)p

)
≤ C(ϵ′)−1 ·

∫
X

(
1 +Gp

1 +G2p
1 + (G′)p

)
+
[
Cϵ′ + 6a0BC

2
0 (α

′)2(µ′)−1p(p− 1) + 56a0Bα
′p(p− 1)

−B−1p(p− 1)
]
·
∫
X
(G′)p−2 · ∥∇G′∥2

+
[
Cϵ′ + 252a0BC

2
0 (α

′)2p+ 90a0BC
2
0 (α

′)2p(p− 1)

+ 510a0BC0(α
′)2p+ 42a0Bα

′µ′p2 − 1

2
B−1α′p

]
·
∫
X
(G′)p−1 ·

(
∥DRm∥2 + ∥D2T∥2

)
·
(
∥D2Rm∥2 + ∥D3T∥2

)
+
[
Cϵ′ + 28a0BC

4
0 (α

′)2p(p− 1) + 16000B3C2
0α

′p+ 12a0BC
3
0 (α

′)2p

+ 176a0BC
2
0 (α

′)2p+ 14a0BC
2
0α

′µ′p(p− 1) + 6a0BC0α
′µ′p

+ 4a0Bα
′µ′p−B−1µ′p

]
·
∫
X
(G′)p−1 ·

(
∥D2Rm∥2 + ∥D3T∥2

)
.

(4.140)
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We can read off the required inequalities from the terms to find a bound
on α′ and choose µ′ appropriately. As in §4.3.1, we also require

∫
X G2p

1 to
be uniformly bounded and must have α′ satisfy an improved bound from
Theorem 4.3.3. Similar reasoning then yields

Corollary 4.3.4. Let k = 1 and set Gq = ∥DqRm∥2 + ∥Dq+1T∥2. Suppose
the assumptions (4.14) - (4.16) hold and set

G′ =
[
α′ ·

(
∥Rm∥2 + ∥D2T∥2

)
+ µ′

]
·
(
∥D2Rm∥2 + ∥D3T∥2

)
= (α′ ·G0 + µ) ·G2 (4.141)

for some µ′ > 0.

i) If p ≥ 3 and

α′ <
1

107a0B6max(1, C0)2p
, (4.142)

then for

µ′ =
1

100a0B2p
(4.143)

there exists some constant Λ′
p = Λ′

p(k, α
′) > 0 such that

∫
X
(G′)p(t) ≤

(
1 +

∫
X
(G′)p(0)

)
eΛ

′
pt <

(
1 +

∫
X
(G′)p(0)

)
eΛ

′
pτ .

(4.144)
That is,

∫
X(G′)p(t) is uniformly bounded along the flow.

In particular, we get that
∫
X Gp

2(t) and both(∫
X
∥D2Rm(t)∥2p

) 1
2p

and

(∫
X
∥D3T (t)∥2p

) 1
2p

(4.145)

are bounded along the Anomaly flow;

ii) If instead p ∈ [1, 3) and

α′ <
1

3 · 107a0B6max(1, C0)2
, (4.146)

then for

µ′ =
1

300a0B2
, (4.147)
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the function
∫
X(G′)p(t) and also

∫
X Gp

2(t) and both(∫
X
∥D2Rm(t)∥2p

) 1
2p

and

(∫
X
∥D3T (t)∥2p

) 1
2p

(4.148)

are uniformly bounded along the Anomaly flow.

Using the Sobolev Embedding Theorem and inductive bootstrapping argu-
ment from §4.2.4, we can conclude the following:

Theorem 4.3.5. Suppose that there exist positive constants B,C0 such that

B−1 ≤
( 1

2∥Υ∥ω

)
≤ B, (4.149)

∥T∥, ∥T∥, ∥Rm∥, ∥DT∥, ∥DT∥ ≤ C0 (4.150)

along the Anomaly flow on [0, τ). If

α′ <
1

3 · 107a0B6max(1, C0)2
, (4.151)

then there exist positive constants Cq for q ≥ 1 such that

∥DqRm∥, ∥Dq+1T∥, ∥Dq+1T∥ ≤ Cq (4.152)

along the Anomaly flow. These constants Cq for q ≥ 1 depend on τ , the
initial metric g0, the slope parameter α′, and the initial bounds B and C0.

Remark 4.3.6. Instead of our choice of coupled upper and lower bounds

B−1 ≤
( 1

2∥Υ∥ω

)
≤ B, (4.153)

we could have instead chosen independent bounds

Bmin ≤
( 1

2∥Υ∥ω

)
≤ Bmax. (4.154)

In this case, our derived bounds on α′ from Theorem 4.3.5 (the k = 1 case)
and Corollary 4.3.2 (the k ≥ 2 case) respectively become

α′ <
min(1, Bmin)

3

3 · 107a0max(1, Bmax)3max(1, C0)2
, (k = 1), (4.155)
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α′ <
Bmin

26a0BmaxC0
, (k ≥ 2). (4.156)

In particular, these derived bounds can respectively be rewritten as

α′ · ∥Rm∥2 < Π1, (k = 1), (4.157)

α′ · ∥Rm∥ < Π2, (k ≥ 2) (4.158)

for some dimensionless constants Π1 and Π2. This is intriguing as the units
on the LHS of the previous two equations differ but the RHS of both are
dimensionless.

4.4 Long-time Existence

Now that we have established the relevant L∞-bounds for covariant deriva-
tives of curvature and torsion, we can appeal to the argument in [PPZ18b]
to obtain long-time existence of the Anomaly flow. We outline the argument
below.

4.4.1 C0- and C1-Bounds

Suppose that there exist positive constants B, C0 such that

B−1 ≤
( 1

2∥Υ∥ω

)
≤ B, (4.159)

∥T∥, ∥T∥, ∥Rm∥, ∥DT∥, ∥DT∥ ≤ C0 (4.160)

along the Anomaly flow on [0, τ). The metrics g are uniformly equivalent
close to time τ , and so if ĝ is a fixed reference metric, the endomorphism

hαβ = (ĝ)αγgγβ (4.161)

has a uniform C0-bound.

We have that the Chern curvatures of ĝ and g are related by

R̂ α
pq β −R α

pq β = ∂p(h
α
γ∇̂qh

γ
β). (4.162)

Since Rm is bounded, we have a C1-bound on the endomorphism h.
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4.4.2 Ck-Bounds

For each q ≥ 0 and for a tensor A, set

∥D̂qA∥2 =
∑

m+l=q

∥∇̂m∇̂
l
A∥2. (4.163)

We also set the tensor S to be the difference of the Christoffel symbols of
the reference and evolving metrics:

Sα
kβ = Γ̂α

kβ − Γα
kβ = −gαγ∇̂kgγβ. (4.164)

From Theorem 4.3.5, we see that if α′ is sufficiently small, the all covariant
derivatives of Rm and T with respect to the moving metric are uniformly
bounded on [0, τ). Since

∂

∂t
g =

( 1

2∥Υ∥ω

)
·
[
Rm+ T ∗ T + α′ ·

(
Rm ∗ Rm+Φ

)]
, (4.165)

it follows that all covariant derivatives of ∂
∂tg with respect to the evolving

metric are also uniformly bounded.

We also have the following from [PPZ18b]:

Proposition 4.4.1 (Phong–Picard–Zhang [PPZ18b] Proposition 2). Sup-
pose all covariant derivatives of Rm and T with respect to the evolving metric
are uniformly bounded along the Anomaly flow on [0, τ). If for k ≥ 1 there
exist positive constants C ′

0, C
′
1, . . . , C

′
q such that

∥DqS∥, ∥D̂q+1g∥ ≤ C ′
q for 1 ≤ q ≤ k − 1, (4.166)

∥g∥, ∥S∥, ∥D̂g∥ ≤ C ′
0 (4.167)

along the Anomaly flow, then there exists some positive C ′
k such that

∥DkS∥, ∥D̂k+1g∥ ≤ C ′
k. (4.168)

The C0- and C1-bounds from §4.4.1 imply the existence of some positive C ′
0

such that
∥g∥, ∥S∥, ∥D̂g∥ ≤ C ′

0. (4.169)

Inductively applying Proposition 4.4.1, we see that the covariant derivatives
of g with respect to the reference metric ĝ, that is ∥D̂qg∥ for each q ≥ 0, are
all uniformly bounded along the flow.
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Now, for any i,m, l, we have

∂i

∂ti
(∇̂m∇̂

l
g) = ∇̂m∇̂

l( ∂i
∂ti

g
)

= ∇̂m∇̂
l ∂i−1

∂ti−1

(( 1

2∥Υ∥ω

)
·
[
Rm+ T ∗ T + α′ ·

(
Rm ∗ Rm+Φ

)])
. (4.170)

The time derivatives of ∂
∂tg can also be expressed in terms of time derivatives

of connections, Rm, and T , which our calculations in previous sections have
shown to be bounded. As such

∂i

∂ti
(∇̂m∇̂

l
g) (4.171)

is uniformly bounded along the flow on [0, τ). We can thus extend the
Anomaly flow smoothly to time t = τ , and by the short-time existence of
the Anomaly flow from Theorem 2 of [PPZ18c], we can further extend it to
[0, τ + ϵ) for some ϵ > 0.

We thus have the following:

Theorem 4.4.2. Suppose that there exist positive constants B, C0 such that

B−1 ≤
( 1

2∥Υ∥ω

)
≤ B. (4.172)

∥T∥, ∥T∥, ∥Rm∥, ∥DT∥, ∥DT∥ ≤ C0 (4.173)

along the Anomaly flow on [0, τ). If

α′ <
1

3 · 107a0B6max(1, C0)2
, (4.174)

then the flow can be extended to [0, τ + ϵ) for some ϵ > 0.
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Chapter 5

Introduction

The rest of this thesis deals with manifolds with G2-structure. We briefly
cover some basics and extend some of the ideas from §1 to this setting.

5.1 Manifolds with G2-Structure

Definition 5.1.1. A 3-form on a 7-dimensional manifold M is called non-
degenerate if for any point p ∈M and any 0 ̸= Y ∈ TpM ,

(Y ⌟φ) ∧ (Y ⌟φ) ∧ φ ̸= 0. (5.1)

A smooth non-degenerate 3-form is also called a G2-structure. In this case,
there is a unique metric g and orientation such that if vol is the volume
form associated to the metric and orientation, then for any p ∈ M and
Y,Z ∈ TpM , we have

−1

6
(Y ⌟φ) ∧ (Z⌟φ) ∧ φ = g(Y,Z)vol. (5.2)

With these induced structures, we also get a Hodge star operator ⋆ and a
dual 4-form ψ = ⋆φ.

Remark 5.1.2. Some authors choose to use the other orientation on M by
flipping the sign in (5.2).

Remark 5.1.3. At times, we may (as an abuse of notation) also refer to
the dual 4-form ψ as a G2-structure.

One can think of a G2-structure as a smooth pointwise identification of the
tangent space TpM with the imaginary octonions ImO.
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On ImO ≃ R7, we have the commutator [·, ·] : ImO × ImO → ImO given
by

[a, b] = ab− ba, (5.3)

and the associator [·, ·, ·] : ImO× ImO× ImO → ImO given by

[a, b, c] = (ab)c− a(bc). (5.4)

There is also a cross-product × : ImO× ImO → ImO defined by

a× b = Im (ab). (5.5)

The group G2 is the subgroup of GL(7,R) that preserves these structures
along with the standard Euclidean metric and volume form.

In this way, we get the 3-form φ on M from the commutator [·, ·] and usual
inner product ⟨·, ·⟩:

φ(a, b, c) =
1

2
⟨a, [b, c]⟩ = 1

2
⟨[a, b], c⟩. (5.6)

Similarly, the 4-form ψ is derived from the associator [·, ·, ·]:

ψ(a, b, c, d) =
1

2
⟨a, [b, c, d]⟩ = −1

2
⟨[a, b, c], d⟩. (5.7)

Finally, the cross-product × is realized by the relation

φ(a, b, c) = ⟨a× b, c⟩. (5.8)

We note here that a 7-dimensional manifoldM admits a G2-structure if and
only if it is orientable and spinnable.

Decomposition of Forms

Given a manifoldM with G2-structure φ, the bundles Ω
k(M) of k-forms for

0 ≤ k ≤ 7 decompose fiberwise into irreducible representations of the group
G2. The space Ωk(M) is itself irreducible when k = 0, 1, 6, 7. For k = 2, 3,
we have

Ω2(M) = Ω2
7(M)⊕ Ω2

14(M), (5.9)

Ω3(M) = Ω3
1(M)⊕ Ω3

7(M)⊕ Ω3
27(M), (5.10)

where the spaces Ωk
l has pointwise dimension l. These irreducuble represen-

tations can be described invariantly as

Ω2
7(M) = {Y ⌟φ | Y ∈ X(M)} = {β ∈ Ω2(M) | ⋆(β ∧ φ) = −2β}, (5.11)
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5.1. Manifolds with G2-Structure

Ω2
14(M) = {β ∈ Ω2(M) | β ∧ ψ = 0}

= {β ∈ Ω2(M) | ⋆(β ∧ φ) = β} ≃ g2, (5.12)

and
Ω3
1(M) = {fφ | f ∈ C∞(M)}, (5.13)

Ω3
7(M) = {Y ⌟ψ | Y ∈ X(M)}, (5.14)

Ω3
27(M) = {γ ∈ Ω3(M) | γ ∧ φ = γ ∧ ψ = 0}. (5.15)

The decomposition for the spaces of 4- and 5-forms are obtained from these
using the Hodge star operator ⋆.

We will not require much else about the decomposition of forms on a mani-
fold with G2-structure in this thesis. As such, we refer the interested reader
to [Kar09, Kar20] for more details.

Torsion of a G2 Structure

The decomposition of forms described above can be applied to the 4-form
dφ and the 5-form dψ. This will in turn allow us to define the torsion forms
of the G2-structure φ.

Definition 5.1.4. The torsion forms of a G2-structure φ are

τ0 ∈ Ω0, τ1 ∈ Ω1, τ2 ∈ Ω2
14, τ3 = Ω3

27, (5.16)

and are defined by the equations

dφ = τ0ψ + 3τ1 ∧ φ+ ⋆τ3, (5.17)

dψ = 4τ1 ∧ ψ + ⋆τ2. (5.18)

Remark 5.1.5. While it is not immediately clear from the above equations,
it can be shown that the τ1 appearing in both (5.17) and (5.18) are the same.
For a proof of this, see [Kar09].

Using identities from the decomposition, we have expressions for the forms
τ0 and τ1 given by

τ0 =
1

7
⋆ (φ ∧ dφ), (5.19)

τ1 =
1

12
⋆
(
φ ∧ ⋆(dφ)

)
=

1

12
⋆
(
ψ ∧ ⋆(dψ)

)
. (5.20)

Using the torsion forms, we can define 16 classes of G2-structure based on
which torsion forms are non-zero. We list a few special cases of particular
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5.2. The G2-Strominger System and G2-Anomaly Flow

interest to us.

Definition 5.1.6. A G2-structure φ is called

i) integrable if τ2 = 0,

ii) closed if dφ = 0 (and hence τ0 = τ1 = τ3 = 0),

iii) coclosed if dψ = 0 (and hence τ1 = τ2 = 0),

iv) nearly parallel if τ1 = τ2 = τ3 = 0 (or equivalently dφ = λψ for some
locally constant λ),

v) torsion-free if it is both closed and coclosed.

We note that if φ is torsion-free, then the metric g that it induces is Ricci-flat
and has holonomy group Hol(g) contained in the group G2.

5.2 The G2-Strominger System and G2-Anomaly
Flow

We recall the Hull–Strominger system (1.22) - (1.25) for a Calabi–Yau three-
fold. Common geometric features in 6 and 7 dimensions have allowed for a
generalization of this system to the G2 setting [CGFT22, dlOLS18, FIUV15].

Definition 5.2.1. LetM be a compact 7-manifold admitting G2 structures
and let E →M be a vector bundle. Fix a constant α′ > 0. A solution to the
G2-Strominger system with slope parameter α′ consists of a G2-structure φ
on M and connections A on E and ∇ on M such that

FA ∧ ψ = 0, (5.21)

dH − α′ ·
(
tr(FA ∧ FA)− tr(R∇ ∧R∇)

)
= 0, (5.22)

d
(
e−2fψ

)
= 0, (5.23)

for some function f called the dilaton, where the 3-form H is given by

H =
1

6
τ0φ+ ⋆(τ1 ∧ φ)− τ3, (5.24)

and R∇ and FA are curvatures of ∇ and A respectively.
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5.2. The G2-Strominger System and G2-Anomaly Flow

Here, the first condition is that both ∇ and A are instanton connections,
the second condition is the analogue of the heterotic Bianchi identity, while
the third is a conformally coclosed condition with e−2f playing the role of
∥Υ∥ω in the Calabi–Yau case. In particular, one can check that this final
condition implies that

dψ = 2df ∧ ψ (5.25)

and so

τ1 =
1

2
df and τ2 = 0. (5.26)

As such, a solution to the G2-Strominger system must involve an integrable
G2-structure.

Remark 5.2.2. Like the Hull–Strominger system, there are varying con-
ventions with the connections involved. For example, some authors impose
the condition that the connection ∇ be the Levi–Civita connection ∇φ as-
sociated to the metric g induced by φ.

As it was in the Calabi–Yau setting, this should again generalize the case
where we have a torsion-free structure. Indeed, suppose we have a torsion-
free G2-structure φ on M . Then, by setting E to be the tangent bundle
TM and both A and ∇ to be the Levi–Civita connection ∇φ associated to
φ (via its induced metric g), we see that both f and H must vanish and
hence both (5.22) and (5.23) are satisfied. For holonomy reasons, we must
have that FA = R∇ ∈ S2g2 ≃ S2Ω2

14. As such, by (5.12), both A and ∇ are
instanton connections and the full system is satisfied.

The Anomaly flow also has a G2-analogue (for the α′ = 0 case) which was
proposed by Ashmore–Minasian–Proto [AMP24]. This is a geometric flow
on a conformally coclosed G2-structure φ with evolution equation given by

∂

∂t
(e−2fψ) = −dH. (5.27)

As was the case in the Calabi–Yau setting, this flow can be seen to pre-
serve the conformally coclosed condition. In addition, to solve the full G2-
Strominger system, this flow should be coupled with flows on the connections
A and ∇.

At the time of writing, there is still much that is unknown about the G2-
Strominger system and G2-Anomaly flow. For the remainder of this thesis,
we instead mainly focus on torsion-free G2-structures and other related ge-
ometric flows.
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5.3 G2-Structures from SU(3)-Structures

The inclusion SU(3) ⊆ G2 suggests a strong relation between SU(3)-structures
and G2-structures. In this section, we describe a manner in which we can
obtain G2-structures from SU(3)-structures by considering S1-fibrations.

Remark 5.3.1. We note the inclusion SU(2) ⊆ G2 and that similar con-
structions can be done with SU(2)-structures and T 3-fibrations (see e.g.,
[FY18, PS24]), however, we will not consider those here.

5.3.1 G2-Structures on Trivial S1-Fibrations

Let X be a Kähler Calabi–Yau threefold and (ω,Υ) be a SU(3)-structure on
X with Kähler form ω. Both ω and Υ are closed forms with local descriptions
given by

ω =
√
−1gjkdz

j ∧ dzk, (5.28)

Υ = fdz1 ∧ dz2 ∧ dz3, (5.29)

were g = gjk is the metric associated to ω and f is a local holomorphic
function.

The pair (ω,Υ) satisfies the relations

ω3

3!
= vol =

√
−1

∥Υ∥2ω
Υ ∧Υ = 2Re

( 1

∥Υ∥ω
Υ
)
∧ Im

( 1

∥Υ∥ω
Υ
)
. (5.30)

In addition, we also have

⋆2β = (−1)kβ for β ∈ Ωk(X), ⋆Re (Υ) = Im (Υ), ⋆ω =
1

2
ω2. (5.31)

Let r denote the angle coordinate on S1 so that dr is the globally defined
volume form on S1 with respect to the standard round metric. If F is a
smooth nowhere-vanishing complex function onX and G is a smooth strictly
positive function on X, we can consider the 3-form φ on M = S1 ×X given
by

φ = Re
( F

∥Υ∥ω
Υ
)
−Gdr ∧ ω. (5.32)

As seen in [KMT12], this form is non-degenerate and thus is a G2-structure
on M . The 3-form φ induces the metric

gφ = 4|F |−
4
3G2dr ⊗ dr +

1

2
|F |

2
3 g, (5.33)
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with associated volume form

volφ =
1

4
|F |

4
3Gdr ∧ vol. (5.34)

More details about this can be found in Appendix D.

Using the expressions (5.33) and (5.34), one can compute that for β ∈
Ωk(X), the Hodge star ⋆φ on M acts by

⋆φβ = (−1)k2(−2+k)|F |(
4
3
− 2

3
k)Gdr ∧ (⋆β), (5.35)

⋆φ(dr ∧ β) = 2(−4+k)|F |(
8
3
− 2

3
k)G−1(⋆β). (5.36)

As such, we can check that the dual 4-form ψ is given by

ψ = −2|F |−
2
3Gdr ∧ Im

( F

∥Υ∥ω
Υ
)
− 1

8
|F |

4
3ω2. (5.37)

Remark 5.3.2. We note that the factors of 2 appearing in the above ex-
pressions are an artifact of the relation between a Hermitian metric gjk and
its associated Riemannian metric gjk (see Appendix D).

Certain choices for the functions F and G result in particular types of G2-
structures. In particular, if we set F = ∥Υ∥ω and G = 1, then we get
that

φ = Re (Υ)− dr ∧ ω, (5.38)

which is a closed 3-form. If instead, we reverse our choices for F and G,
(that is, set F = 1 and G = ∥Υ∥ω), we see that

ψ = −2dr ∧ Im (Υ)− 1

8
ω2, (5.39)

and so the G2-structure we obtain is coclosed.

5.3.2 G2-Structures on Contact Calabi–Yau 7-Folds

We now consider the case where the S1-fibration is non-trivial. In particular,
we study structures on contact Calabi–Yau 7-folds, which admit a smoothly
varying family of codimension 1 subspaces of the tangent space at each point
which satisfy a non-integrability condition.

Definition 5.3.3. A contact Calabi–Yau (cCY) 7-fold consists of a quadru-
ple (M,η,Φ,Υ) such that
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i) M is a 7-dimensional Sasakian manifold with Sasakian structure S =
(ξ, η,Φ, g) and vanishing first basic Chern class cB1 (M) = 0 (see Ap-
pendix C);

ii) Υ is a closed nowhere-vanishing transverse form on D = ker η of type
(3, 0) with

ω3

3!
= volD =

√
−1

∥Υ∥2ω
Υ ∧Υ = 2Re

( 1

∥Υ∥ω
Υ
)
∧ Im

( 1

∥Υ∥ω
Υ
)
, (5.40)

where ω = dη.

We refer to the pair (ω,Υ) as a transverse SU(3)-structure. As with the
regular case, the norm ∥Υ∥ω is constant when ω is transverse Ricci-flat.

Remark 5.3.4. A contact Calabi–Yau manifold (M,η,Φ,Υ) has a trans-
verse Calabi–Yau geometry on the distribution D = ker η, in the sense of
foliations, given by g|D, ω, and Υ. When the Sasakian structure is regu-
lar, or quasi-regular, M is an S1-(orbi)bundle over a Calabi–Yau orbifold
Z = M/Fξ, where Fξ is the foliation obtained from the Reeb vector field
ξ. The Sasakian geometry can also be irregular, and in this case, there
is no S1-fibration structure on M compatible with the contact Calabi–Yau
geometry.

In this case, we again have the local descriptions of ω = dη and Υ

ω =
√
−1gjkdz

j ∧ zk, (5.41)

Υ = fdz1 ∧ dz2 ∧ dz3 (5.42)

where gjk and f are basic functions.

Using the basic Hodge star operator ⋆B, we have the relations

(⋆B)
2β = (−1)kβ for β ∈ Ωk

B(M), ⋆BRe (Υ) = Im (Υ), ⋆Bω =
1

2
ω2.

(5.43)

We use a similar construction to 5.3.1 in order obtain coclosed G2-structure
a cCY 7-fold. Define a 3-form by

φ = Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · η ∧ ω. (5.44)

This induces the metric

gφ = 4∥Υ∥2ω · η ⊗ η +
1

2
g|D (5.45)

105



5.3. G2-Structures from SU(3)-Structures

and volume form

volφ =
1

4
∥Υ∥ω · η ∧ vol|D, where vol|D =

ω3

3!
. (5.46)

The induced Hodge star ⋆φ also has a similar relation to the basic Hodge
star

⋆φβ = (−1)k2(−2+k)∥Υ∥ω · η ∧ (⋆Bβ), (5.47)

⋆φ(η ∧ β) = 2(−4+k) 1

∥Υ∥ω
· (⋆Bβ) (5.48)

where β ∈ Ωk
B(M).

Hence our dual 4-form is

ψ = −2η ∧ Im (Υ)− 1

8
ω2. (5.49)

Remark 5.3.5. We note that there is no similar construction for closed
G2-structures. This is because the contact form η is not closed and also
since

d(η ∧ ω) = dη ∧ ω = ω2 ̸= 0. (5.50)

Remark 5.3.6. The sign convention used for the G2-structure here is op-
posite to that used in [SESS24] to match that of the previous section and
also [PS24]. Additionally, we do not scale the metric here which will result
in the factors of 2 appearing (as described in Remark 5.3.2).

106



Chapter 6

The Laplacian Flow

Having constructed G2-structures from SU(3)-structures, we are interested
to see how the underlying structures change under deformations of the con-
structed ones. In this chapter, we study Bryant’s Laplacian flow [Bry06] on
a trivial S1-fibration and see how it induces a particular flow on the base
structures.

6.1 Properties of the Laplacian Flow

The Laplacian flow is a geometric flow on a manifold with G2-structure. It
evolves a G2-structure φ by

∂

∂t
φ = ∆d,φφ. (6.1)

Here ∆d,φ = dd∗φ + d∗φd is the Hodge Laplacian. We note that since the
metric is dependent on the moving G2-structure φ, the Hodge Laplacian
also depends on φ as implied by the notation.

If the G2-structure is closed, this reduces to

∂

∂t
φ = dd∗φφ, (6.2)

and so the flow preserves closedness given an initial closed G2-structure φ0.
In this case, the flow has also been shown to have short-time existence and
uniqueness [BX11] (see also [BV20, Gri13, Lot20]).

The stationary points of the Laplacian flow are torsion-free G2-structures.
In the case where M is compact, this follows from an integration-by-parts
argument. (For a proof in the non-compact case, see [DGK21].)
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6.2 Evolution Equations for the Base Structures

We apply the Laplacian flow to our closed G2 Ansatz on M = S1 ×X from
§5.3.1. Recall that we defined φ by

φ = Re (Υ)− dr ∧ ω (6.3)

where ω is Kähler form and Υ is a nowhere-vanishing holomorphic (3, 0)-
form on a Calabi–Yau threefold X.

From this, we have the induced metric, volume form, and dual 4-form given
respectively by

gφ = 4∥Υ∥−
4
3

ω · dr ⊗ dr +
1

2
∥Υ∥

2
3
ω · g, (6.4)

volφ =
1

4
∥Υ∥

4
3
ω · dr ∧ vol, (6.5)

ψ = −2∥Υ∥−
2
3

ω · dr ∧ Im (Υ)− 1

8
∥Υ∥

4
3
ω · ω2. (6.6)

The Hodge star also then acts by

⋆φβ = (−1)k2(−2+k)|F |(
4
3
− 2

3
k)Gdr ∧ (⋆β), (6.7)

⋆φ(dr ∧ β) = 2(−4+k)|F |(
8
3
− 2

3
k)G−1(⋆β) (6.8)

for β ∈ Ωk(X).

To apply the Laplacian flow, we need to compute the Hodge Laplacian of φ.

Lemma 6.2.1. If φ is the G2 structure defined by (6.3), then

∆d,φφ = 2L
∇(∥Υ∥

− 2
3

ω )

(
− Re (Υ)− 2dr ∧ ω

)
. (6.9)

Proof. Since φ is closed 3-form on a 7-manifold, we have

∆d,φφ = dd∗φφ = −d ⋆φ dψ. (6.10)

We then compute that

dψ = d
(
− 2∥Υ∥−

2
3

ω · dr ∧ Im (Υ)− 1

8
∥Ω∥

4
3 · ω2

)
=

4

3
∥Υ∥−

4
3

ω · d(log ∥Υ∥ω) ∧ dr ∧ Im (Υ)

− 1

6
∥Υ∥

4
3
ω · d(log ∥Υ∥ω) ∧ ω2. (6.11)
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Taking the Hodge star, we get

⋆φdψ =
4

3
∥Υ∥−

2
3

ω · ⋆φ
[
d(log ∥Υ∥ω) ∧ dr ∧ Im (Υ)

]
− 1

6
∥Υ∥

4
3
ω · ⋆φ

[
d(log ∥Υ∥ω) ∧ ω2

]
=

4

3
∥Υ∥−

2
3

ω ·
(
d(log ∥Υ∥ω)

)♯φ⌟ ⋆φ [dr ∧ Im (Υ)
]

− 1

3
∥Υ∥

4
3
ω ·
(
d(log ∥Υ∥ω)

)♯φ⌟ ⋆φ [1
2
ω2
]

=
4

3
∥Υ∥−

2
3

ω ·
(
2∥Υ∥−

2
3

ω · ∇(log ∥Υ∥ω)
)
⌟
[
− 1

2
∥Υ∥

2
3
ω · Re (Υ)

]
− 1

3
∥Υ∥

4
3
ω ·
(
2∥Υ∥−

2
3

ω · ∇(log ∥Υ∥ω)
)
⌟
[
4∥Υ∥−

4
3

ω · dr ∧ ω2
]

= −4

3
∥Υ∥−

2
3

ω ·
(
∇(log ∥Υ∥ω)

)
⌟
[
Re (Υ) + 2dr ∧ ω

]
= 2
(
∇(log ∥Υ∥−

2
3

ω )
)
⌟
[
Re (Υ) + 2dr ∧ ω

]
. (6.12)

In the above, we used the warped product structure of the induced metric in
order to determine the ♯φ operator on M = S1 ×X in terms of the regular
♯ operator on X

Using Cartan’s Magic Formula and the closedness of ω and Υ, we get that

∆d,φφ = 2L
∇(∥Υ∥

− 2
3

ω )

(
− Re (Υ)− 2dr ∧ ω

)
. (6.13)

Using the intermediate expressions in the above computations, we can also
compute the individual torsion forms of φ.

Lemma 6.2.2. If φ is the G2 structure defined by (6.3), then

τ0 = τ1 = τ3 = 0, τ2 = 2
(
∇(log ∥Υ∥−

2
3

ω )
)
⌟
[
Re (Υ) + 2dr ∧ ω

]
. (6.14)

If we assume that the Laplacian flow preserves our Ansatz, the result of
Lemma 6.2.1 leads to the evolution equation

∂

∂t

(
Re (Υ)− dr ∧ ω

)
= 2L

∇(∥Υ∥
− 2

3
ω )

(
− Re (Υ)− 2dr ∧ ω

)
. (6.15)
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Motivated by this equation, we consider Ansätze (ω,Υ) on X that satisfy
the coupled differential equations

∂

∂t
ω = 4L

∇(∥Υ∥
− 2

3
ω )

ω, (6.16)

∂

∂t
Υ = −2L

∇(∥Υ∥
− 2

3
ω )

Υ. (6.17)

We note that if the evolving pair (ω,Υ) satisfy the above equations, then
they also satisfy (6.15).

Remark 6.2.3. We also note that the metric g along the flow can be de-
termined from the pair (ω,Υ). From Υ, we can obtain a complex structure
J by defining the subbundle T 1,0X ⊆ TCX to be the kernel of Υ, and then
setting J =

√
−1 on T 1,0X and −

√
−1 on its conjugate T 0,1X. From this,

we can define g(Y,Z) = ω(JY, Z).

Remark 6.2.4. At this point, it is not a priori known if the structure (ω,Υ)
along the flow will remain compatible and integrable for all time. However,
the solutions that will be presented in the sequel will satisfy any compati-
bility conditions required as they are obtained by pulling back compatible
structures via diffeomorphisms.

In the following section, we will construct a solution (ω,Υ) compatible with
an integrable complex structure J satisfying (6.16) and (6.17). To motivate
the solution, we take a closer look at the Lie derivative in the first of the
coupled equations. We have the identity

L
∇(∥Υ∥

− 2
3

ω )
ω = 2

√
−1∂∂(∥Υ∥−

2
3

ω ), (6.18)

which holds on any Kähler Calabi–Yau manifold. To show this, we first note
that in local complex coordinates, we have

∇(∥Υ∥−
2
3

ω ) =
∂

∂zj
(∥Υ∥−

2
3

ω )gjk
∂

∂zk
+

∂

∂zk
(∥Υ∥−

2
3

ω )gjk
∂

∂zj
. (6.19)
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Using our local expressions for ω and Cartan’s Magic Formula, we see that

L
∇(∥Υ∥

− 2
3

ω )
ω

= d
[
∇(∥Υ∥−

2
3

ω )⌟ω
]

= d
[( ∂

∂zj
(∥Υ∥−

2
3

ω )gjk
∂

∂zk
+

∂

∂zk
(∥Υ∥−

2
3

ω )gjk
∂

∂zj

)
⌟
(√

−1gpqdz
p ∧ dzq

)]
= −

√
−1d

[ ∂

∂zj
(∥Υ∥−

2
3

ω )dzj
]
+
√
−1d

[ ∂

∂zk
(∥Υ∥−

2
3

ω )dzk
]

= 2
√
−1∂∂(∥Υ∥−

2
3

ω ).
(6.20)

This identity indicates that the flow of ω is related to the MA
1
3 flow; this

will be made precise in the following section.

A similar consideration of the other Lie derivative term tells us that the
complex structure J on X must be changing in time. Indeed, we can check
that

L
∇(∥Υ∥

− 2
3

ω )
Υ

= d
[
∇(∥Υ∥−

2
3

ω )⌟Υ
]

= d
[( ∂

∂zj
(∥Υ∥−

2
3

ω )gjk
∂

∂zk
+

∂

∂zk
(∥Υ∥−

2
3

ω )gjk
∂

∂zj

)
⌟
(
fdz1 ∧ dz2 ∧ dz3

)]
= d
[
f
∂

∂zk
(∥Υ∥−

2
3

ω )g1kdz2 ∧ dz3 + cyclic permutations
]

(6.21)
and so in general, we get terms of type (2, 1) with respect to the current
complex structure J . Hence in order for Ω to remain a (3, 0)-form as it
evolves so that we can define a moving G2-structure

φ = Re (Υ)− dr ∧ ω (6.22)

on M = S1 ×X, the complex structure must change as well. To solve the
coupled system (6.16) - (6.17), we will act on compatible structures by a
moving family of diffeomorphisms Θ, so that from this point of view, the
complex structure is fixed; this idea can be found in e.g., [FPPZ21].

6.3 A Solution from the MA
1
3 Flow

Recall that X is a Kähler Calabi–Yau threefold with Kähler form ω and
nowhere-vanishing holomorphic (3, 0)-form Υ. Let u be a smooth solution
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to the MA
1
3 flow

∂

∂t
u = 12

(
e−2 log ∥Υ∥ω · det(ω +

√
−1∂∂u)

detω

) 1
3
, ω +

√
−1∂∂u > 0, (6.23)

on X with u0 = 0 (see §8 or [PZ20] for more details). From the flow, we
may define a family of Kähler metrics ω̃ = ω +

√
−1∂∂u on X for all time.

The complex structure J is fixed along this flow, and hence we have a family
of Kähler triples (ω̃, J, g̃) on X.

Recall that we have the local expression

∥Υ∥2ω =
|f |2

det gpq
. (6.24)

Using this and the evolution equation (6.23), we can compute that

∂

∂t
u = 12

(det(ω +
√
−1∂∂u)

∥Υ∥2ω · detω

) 1
3

= 12
(det(ω +

√
−1∂∂u)

|f |2
) 1

3

= 12(∥Υ∥−
2
3

ω̃ ) (6.25)

and so

∂

∂t
ω̃ =

∂

∂t

(
ω +

√
−1∂∂u

)
=

√
−1∂∂

( ∂
∂t
u
)
= 12

√
−1∂∂(∥Υ∥−

2
3

ω̃ ). (6.26)

Using Υ and the smooth solution ω̃, we can define a time-dependent vector
field

Y = −2∇̃(∥Υ∥−
2
3

ω̃ ). (6.27)

Let Θ be the 1-parameter family of diffeomorphisms generated by Y in the
sense that

∂

∂t
Θ(p) = Y

(
Θ(p)

)
, Θ0 = IdX . (6.28)

This family exists for all time t (see e.g., Lemma 3.15 in [CK04]).

We can pull back our tensors of interest by this family of diffeomorphisms.
Define

ω̂ = Θ∗ω̃, Υ̂ = Θ∗Υ. (6.29)
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In general, Υ̂ will not remain a (3, 0)-form with respect to the original com-
plex structure J on X. However, by pulling J back by the same family of
diffeomorphisms Θ, we get a flow of complex structures Ĵ = Θ∗J which
keeps Υ̂ a (3, 0)-form. Further, since each of our tensors were obtained by
pullback, we also get a Riemannian metric ĝ = Θ∗g̃ compatible with both ω̂
and Ĵ . That is, we have defined yet another family of Kähler triples (ω̂, Ĵ , ĝ)
on X.

Using a computational identity in DeTurck’s Trick and other tensorial prop-
erties, we will show that the pair (ω̂, Υ̂) is a solution to the coupled equations
(6.16) - (6.17). Recall that the complex structure Ĵ and in turn metric ĝ are
determined by the pair (ω̂, Υ̂) and satisfy Kähler compatibility conditions
described above.

We compute

∂

∂t
ω̂ =

∂

∂t

(
Θ∗ω̃

)
= Θ∗(LY ω̃

)
+Θ∗

( ∂
∂t
ω̃
)

= L(Θ−1)∗Y

(
Θ∗ω̃

)
+Θ∗(12√−1∂∂(∥Υ∥−

2
3

ω̃ )
)

= L
−2(Θ−1)∗[∇̃(∥Υ∥

− 2
3

ω̃
)]
ω̂ + 12

√
−1∂̂∂̂

(
Θ∗(∥Υ∥−

2
3

ω̃ )
)

= −2L
∇̂(∥Υ̂∥

− 2
3

ω̂
)
ω̂ + 12

√
−1∂̂∂̂(∥Υ̂∥−

2
3

ω̂ ). (6.30)

Using our expression for the Lie derivative (6.20), we see that

∂

∂t
ω̂ = 4L

∇̂(∥Υ̂∥
− 2

3
ω̂

)
ω̂, (6.31)

which is the first of our coupled equations.

A similar computation shows that

∂

∂t
Υ̂ =

∂

∂t

(
Θ∗ω̃

)
= Θ∗(LY ω̃

)
= L(Θ−1)∗Y

(
Θ∗Υ̃

)
= L

−2(Θ−1)∗[∇̃(∥Υ∥
− 2

3
ω̃

)]
Υ̂

= −2L
∇̂(∥Υ̂∥

− 2
3

ω̂
)
ω̂, (6.32)
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which is the second equation.

Combining what we have thus far, we have the following result:

Theorem 6.3.1. Let X be a Kähler Calabi–Yau threefold with Kähler form
ω and nowhere-vanishing holomorphic (3, 0)-form Υ. Suppose we start the
G2-Laplacian coflow (7.1) on M = S1 ×X with initial data of the form

φ0 = Re (Υ)− dr ∧ ω, (6.33)

then a solution to the flow exists for all time t and is of the form

φ̂ = Re (Υ̂)− dr ∧ ω̂ (6.34)

where ω̂ = Θ∗ω̃, Υ̂ = Θ∗Υ with Θ being the 1-parameter family of diffeo-
morphisms generated by the (time-dependent) vector field

Y = −2∇̃(∥Υ∥−
2
3

ω̃ ), (6.35)

and ω̃ solves the MA
1
3 flow on X with initial condition ω0 = ω.

By uniqueness of the flow, we conclude that the Laplacian flow preserves
the Ansatz (6.3) and is equivalent to the MA

1
3 flow for this class of initial

data.
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Chapter 7

The (Modified) Laplacian
Coflow

We now apply our previous methods to the (modified) Laplacian coflow.
Here we shall also consider the case of non-trivial fibrations using contact
Calabi–Yau 7-folds.

7.1 Properties of the Coflows

7.1.1 The Laplacian Coflow

In analogy with the Laplacian coflow, Karigiannis–McKay–Tsui [KMT12]
considered a dual coflow on the 4-form ψ. This flow has evolution equation
given by

∂

∂t
ψ = ∆d,φψ, (7.1)

where ∆d,φ = dd∗φ + d∗φd is again the Hodge Laplacian. One can check that
(see e.g., [Gri13]) inducing a flow on the dual 4-form induces a correspond-
ing flow on its G2-structure φ.

Remark 7.1.1. We note that the Laplacian coflow was originally introduced
with a minus sign on the RHS of (7.1) by analogy with the heat equation.
For this thesis, we instead follow the convention in [Lot20]. Additionally,
the 4-form does not itself determine an orientation, however we may assume
an initial orientation which will remain fixed along the flow.

Like the Laplacian flow, it is common to consider its restriction to coclosed
G2-structures. In this case, it reduces to

∂

∂t
ψ = dd∗φψ, (7.2)
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and so the flow preserves the coclosed condition given an initial coclosed
G2-structure ψ. Unlike the Laplacian flow, the short-time existence and
uniqueness of the coflow even under the coclosed restriction is still unknown.

The stationary points of the coflow are torsion-free in both the compact and
non-compact case (see [DGK21]).

7.1.2 The Modified Laplacian Coflow

Part of the reason why short-time existence and uniquenss of the Laplacian
coflow is still unknown is because the Bryant–Xu method [BX11] does not
apply. This occurs due to the presence of an additional negative term from
∆dψ.

To remedy this, Grigorian [Gri13] proposed a modification of the coflow
which adds a corresponding term to cancel the negative one. This flow has
evolution equation given by

∂

∂t
ψ = ∆d,φψ − 2d

[(7
4
τ0 −A

)
φ
]
, (7.3)

where A ∈ R is a constant. The addition of this new term makes the flow
amenable to the Bryant–Xu method, and so the modified coflow has short-
time existence and uniqueness. Unfortunately, in gaining these properties,
we also introduce new stationary points for the flow.

Example 7.1.2. Consider a connected manifold M with a nearly parallel
G2-structure with dφ = λψ where λ > 0 is a constant. In this case, we have

τ0 = λ, τ1 = τ2 = τ3 = 0. (7.4)

Set A = 5
4λ. We then compute that

∆dψ − 2d
[(7

4
τ0 −A

)
φ
]
= d ⋆ d ⋆ ψ − d(λφ)

= d ⋆ dφ− λ2ψ

= d ⋆ (λψ)− λ2ψ

= d(λφ)− λ2ψ = 0, (7.5)

and so φ is a fixed point for the modified coflow.
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To consider both flows simultaneously, we use the evolution equation

∂

∂t
ψ = ∆d,φψ + (C − 2)d

[(7
4
τ0 −A

)
φ
]
, (7.6)

for a constant C ∈ R. Here, the C = 2 case corresponds to the original
Laplacian coflow, and C = 0 corresponds to the modified coflow.

Remark 7.1.3. By slightly augmenting the Bryant–Xu–Grigorian argu-
ment (as noted in [Gri13]), one can actually show that the flow has short-
time existence and uniqueness for all C < 1.

Remark 7.1.4. One can actually check that the G2-Anomaly flow as de-
fined in (5.27) is in some sense a conformally coclosed version of the flow
(7.6) with C = 4

3 and A = 0. Thus in some sense, a better understanding
of the (modified) coflow should provide insight into the G2-Anomaly flow.

7.2 Evolution Equations for the Base Structures

We now apply the flow to our coclosed Ansätze on both a trivial fibration
S1 ×X and on a contact Calabi–Yau manifold.

7.2.1 Trivial S1-Fibrations

Recall that our structures on M = S1 ×X in this case are

φ = Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · dr ∧ ω, (7.7)

gφ = 4∥Υ∥2ω · dr ⊗ dr +
1

2
g, (7.8)

volφ =
1

4
∥Υ∥ω · dr ∧ vol, (7.9)

ψ = −2dr ∧ Im (Υ)− 1

8
ω2. (7.10)

Here, we also have the Hodge star relations

⋆φβ = (−1)k2(−2+k)∥Υ∥ω · dr ∧ (⋆β), (7.11)

⋆φ(dr ∧ β) = 2(−4+k) 1

∥Υ∥ω
· (⋆β) (7.12)
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where β ∈ Ωk(X).

We have the following result on the Hodge Laplacian of ψ:

Lemma 7.2.1. If φ is the G2-structure defined by (7.7), then

∆d,φψ = 2L∇(log ∥Υ∥ω)

(
− 2dr ∧ Im (Υ) +

1

8
ω2
)
. (7.13)

Proof. The proof is similar to that of Lemma 6.2.1. Since ψ is a closed
4-form on a 7-manifold, we have

∆d,φψ = dd∗φψ = d ⋆φ dφ. (7.14)

Direct computations show that

dφ = d
(
Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · dr ∧ ω

)
= − 1

∥Υ∥ω
· d(log ∥Υ∥ω) ∧ Re (Υ)− ∥Υ∥ω · d(log ∥Υ∥ω) ∧ dr ∧ ω. (7.15)

Taking the Hodge star of the above, we see that

⋆φdφ = − 1

∥Υ∥ω
· ⋆φ
[
d(log ∥Υ∥ω) ∧ Re (Υ)

]
− ∥Υ∥ω · ⋆φ

[
d(log ∥Υ∥ω) ∧ dr ∧ ω

]
=

1

∥Υ∥ω
·
(
d(log ∥Υ∥ω)

)♯φ⌟ ⋆φ [Re (Υ)
]

+ ∥Υ∥ω ·
(
d(log ∥Υ∥ω)

)♯φ ⋆φ [dr ∧ ω]
=

1

∥Υ∥ω
·
(
2∇(log ∥Υ∥ω)

)
⌟
[
− 2∥Υ∥ω · dr ∧ Im (Υ)

]
+ ∥Υ∥ω ·

(
2∇(log ∥Υ∥ω)

)
⌟
[1
8

1

∥Υ∥ω
· ω2

]
= 2
(
∇(log ∥Υ∥ω)

)
⌟
[
− 2dr ∧ Im (Υ) +

1

8
ω2
]
. (7.16)

Cartan’s Magic Formula and the closedness of ω and Υ then give

∆d,φψ = 2L∇(log ∥Υ∥ω)

(
− 2dr ∧ Im (Υ) +

1

8
ω2
)

(7.17)

as desired.
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We can also check the torsion forms of this structure.

Lemma 7.2.2. If φ is the G2-structure defined by (7.7), then

τ0 = τ1 = τ2 = 0, τ3 = 2
(
∇(log ∥Υ∥ω)

)
⌟
[
− 2dr ∧ Im (Υ) +

1

8
ω2
]
. (7.18)

Proof. We use the identities from §5.1 to compute the torsion forms of φ.
Since ψ is closed, we must have the τ1 = τ2 = 0.

Next, using the expression from above, we can see that

φ ∧ dφ

=
[
Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · dr ∧ ω

]
∧
[
− 1

∥Υ∥ω
· d(log ∥Υ∥ω) ∧ Re (Υ)− ∥Υ∥ω · d(log ∥Υ∥ω) ∧ dr ∧ ω

]
.

(7.19)
This vanishes since Re (Υ)∧ ω = 0 due to type considerations and Re (Υ)∧
Re (Υ) = 0 since Re (Υ) is a 3-form.

From (5.19), we see that τ0 = 0. We then have

τ3 = ⋆φdφ = 2
(
∇(log ∥Υ∥ω)

)
⌟
[
− 2dr ∧ Im (Υ) +

1

8
ω2
]
. (7.20)

We again apply the flow (7.6) to our Ansatz. Using the previous two lem-
mata, we can write

∂

∂t

(
− 2dr ∧ Im (Υ)− 1

8
ω2
)

= 2L∇(log ∥Υ∥ω)

(
− 2dr ∧ Im (Υ) +

1

8
ω2
)

+A(C − 2)
1

∥Υ∥ω
· d(log ∥Υ∥ω) ∧ Re (Υ)

+A(C − 2)∥Υ∥ω · d(log ∥Υ∥ω) ∧ dr ∧ ω. (7.21)

By matching terms, we can deduce the following:
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Theorem 7.2.3. Let X be a Kähler Calabi–Yau threefold with Kähler form
ω and nowhere-vanishing holomorphic (3, 0)-form Υ. Suppose we have a
family of compatible SU(3)-structures (ω̂, Υ̂) with initial conditions ω̂0 = ω,
Υ̂0 = Υ satisfying the coupled differential equations

∂

∂t
ω̂ = −2L∇̂(log ∥Υ̂∥ω̂)

ω̂ + β, (7.22)

∂

∂t
Υ̂ = 2L∇̂(log ∥Υ̂∥ω̂)

Υ̂ + γ, (7.23)

for some β ∈ Ω2(X) and γ ∈ Ω3(X). Let φ̂ be the family of G2-structures
on M = S1 ×X defined by

φ̂ = Re
( 1

∥Υ̂∥ω̂
Υ̂
)
− ∥Υ̂∥ω̂ · dr ∧ ω̂, (7.24)

then φ̂ is a solution to the coflow (7.6) if and only if

β ∧ ω̂ = −4A(C − 2)
1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂), (7.25)

Im (γ) =
1

2
A(C − 2)∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ ω̂. (7.26)

Proof. We note that the dual 4-forms ψ̂ have the equation

ψ̂ = −2dr ∧ Im (Υ̂)− 1

8
ω̂2. (7.27)

Since the radial coordinate r does not evolve, the 4-form changes by

∂

∂t
ψ̂ = −2dr ∧

( ∂
∂t

Im (Υ̂)
)
− 1

8

( ∂
∂t
ω̂2
)
. (7.28)

The evolution equation for the flow (7.21) means that in order to solve the
flow, we must have

− 2dr ∧
( ∂
∂t

Im (Υ̂)
)
− 1

8

( ∂
∂t
ω̂2
)

= 2L∇̂(log ∥Υ̂∥ω̂)

(
− 2dr ∧ Im (Υ̂) +

1

8
ω̂2
)

+A(C − 2) · 1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂)

+A(C − 2)∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ dr ∧ ω̂. (7.29)
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Substituting in our assumptions (7.22) - (7.23), we are left with

− 2dr ∧ Im (γ)− 1

4
β ∧ ω̂

= A(C − 2)
1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂)

+A(C − 2)∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ dr ∧ ω̂. (7.30)

By interior multiplication by ∂
∂r , we get

−2Im (γ) = −A(C − 2)∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ ω̂. (7.31)

Plugging this back into the equation then yields

−1

4
β ∧ ω̂ = A(C − 2)

1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂), (7.32)

as desired.

From this, we can see that if the complex structure J is fixed along the flow,
then by type decomposition from (7.25) and (7.26), we must have

β(1,1) = 0, Im (γ)(0,3)⊕(3,0) = 0. (7.33)

A Special Case

In general, the conditions from the previous theorem are hard to solve.
However, in the case of the original coflow (C = 2 or A = 0), we can make
a simplification. The evolution equation becomes

∂

∂t

(
− 2dr ∧ Im (Υ)− 1

8
ω2
)

= 2L∇(log ∥Υ∥ω)

(
− 2dr ∧ Im (Υ) +

1

8
ω2
)

(7.34)

and so it is enough to solve the coupled system

∂

∂t
ω = −2L∇(log ∥Υ∥ω)ω, (7.35)

∂

∂t
Υ = 2L∇(log ∥Υ∥ω)Υ. (7.36)
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A similar computation to (6.20) shows that

L∇(log ∥Υ∥ω) = 2
√
−1∂∂(log ∥Υ∥ω). (7.37)

Continuing this further using our local descriptions, we have

2
√
−1∂∂(log ∥Υ∥ω) =

√
−1∂∂

(
log

|f |2

det gpq

)
= −

√
−1∂∂(log det gpq) +

√
−1∂∂(log |f |2)

= Ric(ω, J), (7.38)

where the last term in the penultimate line vanishes since f is a local holo-
morphic function. Combining these with the evolution equation for ω, we
obtain something reminiscent of the Kähler–Ricci flow.

We note that the other Lie derivative term involving Υ will again produce
terms of type (2, 1) with respect to the complex structure J on X. We thus
conclude that the complex structure J must move with respect to time and
will use a similar pullback method to construct our solutions.

A Solution from the Kähler–Ricci Flow

Let ω̃ be the unique smooth solution for the (rescaled) Kähler–Ricci flow

∂

∂t
ω̃ = −4Ric(ω̃, J), ω̃0 = ω (7.39)

onX. SinceX is Kähler Calabi–Yau, we have that its first Chern class c1(X)
vanishes and so this solution exists for all time t ∈ [0,∞) (see [Cao85]). As

it did with the MA
1
3 flow in §6.3, the complex structure J remains fixed and

we obtain a family of Kähler triples (ω̃, J, g̃) on X.

We use the solutions ω̃ and the holomorphic (3, 0)-form to define a time-
dependent vector field

Y = 2∇̃(log ∥Υ∥ω̃) (7.40)

and let Θ be the 1-parameter family of diffeomorphisms that it generates.

Following §6.3, we pull back ω̃ and Υ by this family and define

ω̂ = Θ∗ω̃, Υ̂ = Θ∗Υ. (7.41)

The same subtleties apply here, however this construction still satisfies the
required compatibility conditions by generating another family of Kähler
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triples (ω̂, Ĵ , ĝ) on X, where Ĵ = Θ∗J and ĝ = Θ∗g̃. In particular, our new
3-form Υ̂ is a holomorphic (3, 0)-form with respect to the moving complex
structure Ĵ .

Applying the same DeTurck Trick computation here yields

∂

∂t
ω̂ =

∂

∂t

(
Θ∗ω̃

)
= Θ∗(LY ω̃

)
+Θ∗

( ∂
∂t
ω̃
)

= L(Θ−1)∗Y

(
Θ∗ω̃

)
+Θ∗(− 4Ric(ω̃, J)

)
= L

2(Θ−1)∗[∇̃(log ∥Υ∥ω̃)]
ω̂ − 4Ric(Θ∗ω̃,Θ∗J)

= 2L∇̂(log ∥Υ̂∥ω̂)
ω̂ − 4Ric(ω̂, Ĵ)

= −2L∇̂(log ∥Υ̂∥ω̂)
ω̂. (7.42)

A similar calculation shows that

∂

∂t
Υ = 2L∇(log ∥Υ∥ω)Υ. (7.43)

and so the coupled system is satisfied. This shows the following:

Theorem 7.2.4. Let X be a Kähler Calabi–Yau threefold with Kähler form
ω and nowhere-vanishing holomorphic (3, 0)-form Υ. Suppose we start the
G2-Laplacian flow (6.1) on M = S1 ×X with initial data of the form

φ0 = Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · dr ∧ ω, (7.44)

then a solution to the flow exists for all time t and is of the form

φ̂ = Re
( 1

∥Υ̂∥ω̂
Υ̂
)
− ∥Υ̂∥ω̂ · dr ∧ ω̂ (7.45)

where ω̂ = Θ∗ω̃, Υ̂ = Θ∗Υ with Θ being the 1-parameter family of diffeo-
morphisms generated by the (time-dependent) vector field

Y = 2∇̃(log ∥Υ∥ω̃), (7.46)

and ω̃ solves the Kähler–Ricci flow on X with initial condition ω0 = ω.
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7.2.2 Contact Calabi–Yau 7-Folds

We return to the setting on a contact Calabi–Yau 7-fold M . Recall from
§5.3.2 that our ansatz was of the form

φ = Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · η ∧ ω, (7.47)

where η is the contact form, ω = dη is the transverse Kähler form, and Υ is
a nowhere-vanishing transverse (3, 0)-form.

As we saw previously, this induces the following structures

gφ = 4∥Υ∥2ω · η ⊗ η +
1

2
g|D. (7.48)

volφ =
1

4
∥Υ∥ω · η ∧ vol|D, (7.49)

ψ = −2η ∧ Im (Υ)− 1

8
ω2, (7.50)

and the identities

⋆φβ = (−1)k2(−2+k)∥Υ∥ω · η ∧ (⋆Bβ), (7.51)

⋆φ(η ∧ β) = 2(−4+k) 1

∥Υ∥ω
· (⋆Bβ) (7.52)

for β ∈ Ωk
B(M).

We compute the Hodge Laplacian and torsion forms for such a G2-structure.
Even though the structures have similar expressions, we will see that the
non-trivial topology will produce extra terms.

Lemma 7.2.5. If φ is the G2-structure defined by (7.47), then

∆d,φψ = 2L∇D(log ∥Υ∥ω)

(
− 2η ∧ Im (Υ) +

1

8
ω2
)

− 16∥Υ∥2ω · d(log ∥Υ∥ω) ∧ η ∧ ω − 8∥Υ∥2ω · ω2. (7.53)

Proof. Once again, we have

∆d,φψ = d ⋆φ dφ. (7.54)

We compute that

dφ = d
(
Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · η ∧ ω

)
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= − 1

∥Υ∥ω
· d(log ∥Υ∥ω) ∧ Re (Υ)

− ∥Υ∥ω · d(log ∥Υ∥ω) ∧ η ∧ ω − ∥Υ∥ω · ω2. (7.55)

Taking the Hodge star of both sides, we obtain

⋆φdφ = − 1

∥Υ∥ω
· ⋆φ
[
d(log ∥Υ∥ω) ∧ Re (Υ)

]
− ∥Υ∥ω · ⋆φ

[
d(log ∥Υ∥ω) ∧ η ∧ ω

]
− ∥Υ∥ω · ⋆φω2

=
1

∥Υ∥ω
·
(
d(log ∥Υ∥ω)

)♯φ⌟ ⋆φ [Re (Υ)
]

+ ∥Υ∥ω ·
(
d(log ∥Υ∥ω)

)♯φ⌟ ⋆φ [η ∧ ω]− 8∥Υ∥2ω · η ∧ ω

=
1

∥Υ∥ω
·
(
2∇D(log ∥Υ∥ω)

)
⌟
[
− 2∥Υ∥ω · η ∧ Im (Υ)

]
+ ∥Υ∥ω ·

(
2∇D(log ∥Υ∥ω)

)
⌟
[1
8

1

∥Υ∥ω
· ω2

]
− 8∥Υ∥2ω · η ∧ ω

= 2
(
∇D(log ∥Υ∥ω)

)
⌟
[
− 2η ∧ Im (Υ) +

1

8
ω2
]

− 8∥Υ∥2ω · η ∧ ω. (7.56)

Once again, using Cartan’s Magic Formula, we see that

∆d,φψ = d ⋆φ dφ

= 2L∇D(log ∥Υ∥ω)

(
− 2η ∧ Im (Υ) +

1

8
ω2
)

− 16∥Υ∥2ω · d(log ∥Υ∥ω) ∧ η ∧ ω − 8∥Υ∥2ω · ω2. (7.57)

Lemma 7.2.6. If φ is the G2-structure defined by (7.47), then

τ1 = τ2 = 0, τ0 =
24

7
∥Υ∥ω,

τ3 = 2
(
∇D(log ∥Υ∥ω)

)
⌟
[
− 2η ∧ Im (Υ) +

1

8
ω2
]

− 24

7
Re (Υ)− 32

7
∥Υ∥2 · η ∧ ω. (7.58)
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Proof. Using (5.19), we have

τ0 =
1

7
⋆φ (φ ∧ dφ)

=
1

7
⋆φ

(
∥Υ∥2ω · η ∧ ω3

)
=

24

7
∥Υ∥ω ⋆φ

(1
4
∥Υ∥ω · η ∧ vol|D

)
=

24

7
∥Υ∥ω. (7.59)

Since ψ is closed, we get that

τ3 = ⋆φdφ− ⋆(τ0ψ)

= 2
(
∇D(log ∥Υ∥ω)

)
⌟
[
− 2η ∧ Im (Υ) +

1

8
ω2
]
− 8∥Υ∥2 · η ∧ ω

− 24

7
∥Υ∥ω ·

(
Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · η ∧ ω

)
= 2
(
∇D(log ∥Υ∥ω)

)
⌟
[
− 2η ∧ Im (Υ) +

1

8
ω2
]

− 24

7
Re (Υ)− 32

7
∥Υ∥2 · η ∧ ω. (7.60)

We now apply the flow (7.6) to our G2-structures. Using our previous two
results, we get the evolution equation

∂

∂t

(
− 2η ∧ Im (Υ)− 1

8
ω2
)

= 2L∇D(log ∥Υ∥ω)

(
− 2η ∧ Im (Υ) +

1

8
ω2
)

− 16∥Υ∥2ω · d(log ∥Υ∥ω) ∧ η ∧ ω − 8∥Υ∥2ω · ω2

+ (C − 2)d
[(

6∥Υ∥ω −A
)
·
(
Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · η ∧ ω

)]
= 2L∇D(log ∥Υ∥ω)

(
− 2η ∧ Im (Υ) +

1

8
ω2
)

− 16∥Υ∥2ω · d(log ∥Υ∥ω) ∧ η ∧ ω − 8∥Υ∥2ω · ω2

− 12(C − 2)∥Υ∥2ω · d(log ∥Υ∥ω) ∧ η ∧ ω − 6(C − 2)∥Υ∥2ω · ω2

+A(C − 2)
1

∥Υ∥ω
· d(log ∥Υ∥ω) ∧ Re (Υ)

+A(C − 2)∥Υ∥ω · d(log ∥Υ∥ω) ∧ η ∧ ω +A(C − 2)∥Υ∥ω · ω2
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= 2L∇D(log ∥Υ∥ω)

(
− 2η ∧ Im (Υ) +

1

8
ω2
)

+
[
A(C − 2)− 12

(
C − 2

3

)
∥Υ∥ω

]
·
∥∥Υ∥ω · d(log ∥Υ∥ω) ∧ η ∧ ω

+
[
A(C − 2)− 6

(
C − 2

3

)
∥Υ∥ω

]
·
∥∥Υ∥ω · ω2

+A(C − 2)
1

∥Υ∥ω
· d(log ∥Υ∥ω) ∧ Re (Υ). (7.61)

We first consider how our flow and ansatz are compatible with a particular
deformation of type II (see Appendix C).

Theorem 7.2.7. LetM be a contact Calabi–Yau 7-fold with contact form η,
transverse Kähler form ω = dη, and nowhere-vanishing transverse holomor-
phic (3, 0)-form Υ. Suppose we have a family of contact forms η̂ = η + dch
and compatible transverse SU(3)-structures (ω̂ = dη̂, Υ̂) on M with initial
conditions η̂0 = η, ω̂0 = ω, Υ̂0 = Υ satisfying the coupled differential equa-
tions

∂

∂t
ω̂ = −2L∇̂D(log ∥Υ̂∥ω̂)

ω̂ + β, (7.62)

∂

∂t
Υ̂ = 2L∇̂D(log ∥Υ̂∥ω̂)

Υ̂ + γ, (7.63)

for some h ∈ C∞
B (M), β ∈ Ω2

B(M) and γ ∈ Ω3
B(M). Let φ̂ be the family of

G2-structures on M defined by

φ̂ = Re
( 1

∥Υ̂∥ω̂
Υ̂
)
− ∥Υ̂∥ω̂ · dr ∧ ω̂, (7.64)

then φ̂ is a solution to the coflow (7.6) if and only if

β ∧ ω̂ = −4
[
A(C − 2)− 6

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · ω̂2

− 4A(C − 2)
1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂)

+ 16
((

∇̂D(log ∥Υ̂∥ω̂)
)
⌟ ω̂
)
∧ Im (Υ̂)

+ 16d
(
∇̂D(log ∥Υ̂∥ω̂)

)
⌟ dch

)
∧ Im (Υ̂), (7.65)

Im (γ) =
1

2

[
A(C − 2)− 12

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ ω̂. (7.66)
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Proof. The proof is similar to that of Theorem 7.2.3. Using that

ψ̂ = −2η̂ ∧ Im (Υ̂)− 1

8
ω̂2, (7.67)

we get that

∂

∂t
ψ̂ = −2η̂ ∧

( ∂
∂t

Im (Υ̂)
)
− 1

8

( ∂
∂t
ω̂2
)
− 2
( ∂
∂t
η̂
)
∧ Im (Υ). (7.68)

To satisfy the flow, we must then have

− 2η̂ ∧
( ∂
∂t

Im (Υ̂)
)
− 1

8

( ∂
∂t
ω̂2
)
− 2
( ∂
∂t
η̂
)
∧ Im (Υ̂)

= 2L∇̂D(log ∥Υ̂∥ω̂)

(
− 2η̂ ∧ Im (Υ̂) +

1

8
ω̂2
)

+
[
A(C − 2)− 12

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ η̂ ∧ ω̂

+
[
A(C − 2)− 6

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · ω̂2

+A(C − 2)
1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂). (7.69)

We first notice that(
L∇̂D(log ∥Υ̂∥ω̂)

η̂
)
∧ Im (Υ̂)

=
((

∇̂D(log ∥Υ̂∥ω̂)
)
⌟ ω̂
)
∧ Im (Υ̂) + d

(
∇̂D(log ∥Υ̂∥ω̂)

)
⌟ dch

)
∧ Im (Υ̂),

which is a basic form.

If we plug in our assumptions into (7.69), we get

− 2η̂ ∧ Im (γ)− 1

4
β ∧ ω̂ − 2

( ∂
∂t
dch
)
∧ Im (Υ̂)

= −4
((

∇̂D(log ∥Υ̂∥ω̂)
)
⌟ ω̂
)
∧ Im (Υ̂)

− 4d
(
∇̂D(log ∥Υ̂∥ω̂)

)
⌟ dch

)
∧ Im (Υ̂)

+
[
A(C − 2)− 12

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ η̂ ∧ ω̂

+
[
A(C − 2)− 6

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · ω̂2

+A(C − 2)
1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂). (7.70)
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We recall that the Reeb vector field ξ stays fixed under this deformation.
Contracting with ξ, we get

− 2Im (γ)

= −
[
A(C − 2)− 12

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · d(log ∥Υ̂∥ω̂) ∧ ω̂ (7.71)

and hence

− 1

4
β ∧ ω̂ − 2

( ∂
∂t
dch
)
∧ Im (Υ)

= −4
((

∇̂D(log ∥Υ̂∥ω̂)
)
⌟ ω̂
)
∧ Im (Υ̂)

− 4d
(
∇̂D(log ∥Υ̂∥ω̂)

)
⌟ dch

)
∧ Im (Υ̂)

+
[
A(C − 2)− 6

(
C − 2

3

)
∥Υ̂∥ω̂

]
·
∥∥Υ̂∥ω̂ · ω̂2

+A(C − 2)
1

∥Υ̂∥ω̂
· d(log ∥Υ̂∥ω̂) ∧ Re (Υ̂). (7.72)

Since this deformation of type II fixes the transverse complex structure J ,
applying type decomposition to (7.65) and (7.66) implies that we again must
have

Im (γ)(0,3)⊕(3,0) = 0. (7.73)

The additional terms, however, no longer yield a type condition on β.

Remark 7.2.8. As in the previous section, we notice that choosing A = 0
and C = 2 greatly simplifies the evolution equation to

∂

∂t

(
− 2η ∧ Im (Υ)− 1

8
ω2
)

= 2L∇D(log ∥Υ∥ω)

(
− 2η ∧ Im (Υ) +

1

8
ω2
)
. (7.74)

This suggests that we may mimic the special case there (while also allowing
η to evolve with time) and write

∂

∂t
η = 2L∇D(log ∥Υ∥ω)η, (7.75)

∂

∂t
ω = −2L∇D(log ∥Υ∥ω)ω, (7.76)
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∂

∂t
Υ = 2L∇D(log ∥Υ∥ω)Υ. (7.77)

While seeming promising as an Ansatz, we note that this is incompatible
with the relation ω = dη.

Breaking the Sasakian Structure

As seen in the previous remark, the relation ω = dη becomes rather restric-
tive. We now consider a different type of deformation that allows for more
degrees of freedom. In particular, we allow the transverse structure to vary
within the basic cohomology class [dη]B. Note that the transverse complex
structure J is still fixed by this additional freedom.

Let S = (ξ, η,Φ, g) be a Sasakian structure on M and ω′ ∈ [dη]B. Since the
transverse complex structure given remains the same there, we can treat
(ω′,Υ) as a transverse SU(3)-structure in its own right. This can, in some
sense, be considered a breaking of the Saskain structure, since the transverse
Kähler form ω′ is no longer determined by the contact form η. By El Kacimi-
Alaoui’s transverse

√
−1∂∂-Lemma [EKA90] (see Appendix C), there exists

a basic function ζ such that

ω = dη + ddcζ. (7.78)

In a similar manner to §5.3, we define a G2-structure using (ω′,Υ) by

φ = Re
( 1

∥Υ∥ω′
Υ
)
− ∥Υ∥ω′ · η ∧ ω′. (7.79)

In this case, we have the metric

gφ = 4∥Υ∥2ω′ · η ⊗ η +
1

2
g′|D (7.80)

and volume form

volφ =
1

4
∥Υ∥ω′ · η ∧ vol′|D. (7.81)

Additionally if β is a basic k-form, then the Hodge star acts by

⋆φβ = (−1)k2(−2+k)∥Υ∥ω′ · η ∧ (⋆′Bβ), (7.82)

⋆φ(η ∧ β) = 2(−4+k) 1

∥Υ∥ω′
· (⋆′Bβ), (7.83)
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and so the dual 4-form is given by

ψ = −2η ∧ Im (Υ)− 1

8
(ω′)2, (7.84)

and is hence closed.

Once again, we have the Hodge Laplacian and torsion forms associated to
these structures.

Lemma 7.2.9. If φ is the G2-structure defined in (7.79), then

∆d,φψ = 2L∇′
D(log ∥Υ∥ω′ )

(
− 2η ∧ Im (Υ) +

1

8
(ω′)2

)
− 24∥Υ∥2ω′ · d(log ∥Υ∥ω′) ∧ η ∧ ω′

+ 8∥Υ∥2ω′ · d(log ∥Υ∥ω′) ∧ η ∧ dη
− 12∥Υ∥2ω′ · dη ∧ ω′ + 4∥Υ∥2ω′ · dη ∧ dη. (7.85)

Lemma 7.2.10. If φ is the G2-structure defined by (7.79), then

τ1 = τ2 = 0, τ0 =
24

7
∥Υ∥ω′ ,

τ3 = 2
(
∇′

D(log ∥Υ∥ω′)
)
⌟
[
− 2η ∧ Im (Υ) +

1

8
(ω′)2

]
− 24

7
Re (Υ)− 60

7
∥Υ∥2ω′ · η ∧ ω′ + 4∥Υ∥2ω′ · η ∧ dη. (7.86)

The proofs are similar to before but require the use of some transverse Kähler
identities. Further, one can check that these coincide with our previous
identities in the case where ω′ = dη.

Using our evolution equation, we get

∂

∂t

(
− 2η ∧ Im (Υ)− 1

8
(ω′)2

)
= 2L∇′

D(log ∥Υ∥ω′ )

(
− 2η ∧ Im (Υ) +

1

8
(ω′)2

)
+
[
A(C − 2)− 12C∥Υ∥ω′

]
· ∥Υ∥ω′ · d(log ∥Υ∥ω′) ∧ η ∧ ω′

+ 8∥Υ∥2ω′ · d(log ∥Υ∥ω′) ∧ η ∧ dη

+
[
A(C − 2)− 6C∥Υ∥ω′

]
· ∥Υ∥ω′ · dη ∧ ω′ + 4∥Υ∥2ω′ · dη ∧ dη

+A(C − 2)
1

∥Υ∥ω′
· d(log ∥Υ∥ω′) ∧ Re (Υ). (7.87)
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A similar analysis to before using type decomposition gives the following:

Theorem 7.2.11. Let M be a contact Calabi–Yau 7-fold with contact form
η, and nowhere-vanishing transverse holomorphic (3, 0)-form Υ. Let ω′ ∈
[dη]B be a transverse Kähler form. Suppose we have a family of contact
forms η̂ and a family of compatible transverse SU(3)-structures (ω̂′, Υ̂) with
ω̂′ ∈ [dη̂]B and initial conditions η̂0 = η, ω̂′

0 = ω′, Υ̂0 = Υ satisfying the
coupled differential equations

∂

∂t
η̂ = 2L∇̂D(log ∥Υ̂∥ω̂′ )

η̂ + α, (7.88)

∂

∂t
ω̂′ = −2L∇̂D(log ∥Υ̂∥ω̂′ )

ω̂′ + β, (7.89)

∂

∂t
Υ̂ = 2L∇̂D(log ∥Υ̂∥ω̂′ )

Υ̂ + γ (7.90)

for some α ∈ Ω1(M), β ∈ Ω2(M), and γ ∈ Ω3(M). Let φ̂ be the family of
G2-structures on M defined by

φ̂ = Re
( 1

∥Υ∥ω̂′
Υ̂
)
− ∥Υ∥ω̂′ · dr ∧ ω̂′, (7.91)

then φ̂ is a solution to the coflow (7.6) if and only if

−2α ∧ Im (Υ̂) = A(C − 2)
1

∥Υ̂∥ω̂′
· d(log ∥Υ̂∥

ω̂′) ∧ Re (Υ̂), (7.92)

− 2η̂ ∧ Im (γ)− 1

4
β ∧ ω̂′

=
[
A(C − 2)− 12C∥Υ̂∥ω̂′

]
· ∥Υ̂∥ω̂′ · d(log ∥Υ̂∥ω̂′) ∧ η̂ ∧ ω̂′

+ 8∥Υ̂∥2ω̂′ · d(log ∥Υ̂∥ω̂′) ∧ η̂ ∧ dη̂

+
[
A(C − 2)− 6C∥Υ̂∥ω̂′

]
· ∥Υ̂∥ω̂′ · dη̂ ∧ ω̂′ + 4∥Υ̂∥2ω̂′ · dη̂ ∧ dη̂. (7.93)
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Chapter 8

Convergence of Solutions

We revisit our solutions to the Laplacian flow and coflow on the trivial
fibration M = S1 ×X from §6.3 and §7.2.1.

8.1 Parabolic Complex Monge–Ampère Flows

Recall that we had the following results:

Theorem 6.3.1. Let X be a Kähler Calabi–Yau threefold with Kähler form
ω and nowhere-vanishing holomorphic (3, 0)-form Υ. Suppose we start the
G2-Laplacian coflow (7.1) on M = S1 ×X with initial data of the form

φ0 = Re (Υ)− dr ∧ ω, (6.33)

then a solution to the flow exists for all time t and is of the form

φ̂ = Re (Υ̂)− dr ∧ ω̂ (6.34)

where ω̂ = Θ∗ω̃, Υ̂ = Θ∗Υ with Θ being the 1-parameter family of diffeo-
morphisms generated by the (time-dependent) vector field

Y = −2∇̃(∥Υ∥−
2
3

ω̃ ), (6.35)

and ω̃ solves the MA
1
3 flow on X with initial condition ω0 = ω.

Theorem 7.2.4. Let X be a Kähler Calabi–Yau threefold with Kähler form
ω and nowhere-vanishing holomorphic (3, 0)-form Υ. Suppose we start the
G2-Laplacian flow (6.1) on M = S1 ×X with initial data of the form

φ0 = Re
( 1

∥Υ∥ω
Υ
)
− ∥Υ∥ω · dr ∧ ω, (7.44)
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then a solution to the flow exists for all time t and is of the form

φ̂ = Re
( 1

∥Υ̂∥ω̂
Υ̂
)
− ∥Υ̂∥ω̂ · dr ∧ ω̂ (7.45)

where ω̂ = Θ∗ω̃, Υ̂ = Θ∗Υ with Θ being the 1-parameter family of diffeo-
morphisms generated by the (time-dependent) vector field

Y = 2∇̃(log ∥Υ∥ω̃), (7.46)

and ω̃ solves the Kähler–Ricci flow on X with initial condition ω0 = ω.

These demonstrate the existence of solutions to the Laplacian flow and
coflow respectively on M = S1 ×X. It remains to discuss the convergence
of these at infinity. This will rely on the theory of complex Monge–Ampère
flows developed by Picard–Zhang [PZ20].

On a compact Kähler manifold X of complex dimension n and Kähler form
ω, we can consider the parabolic complex Monge–Ampère equation

∂

∂t
u = H

(
e−a · det(ω +

√
−1∂∂u)

detω

)
, ω +

√
−1∂∂u > 0, (8.1)

where H : R+ → R is a smooth function with H ′ > 0 and a ∈ C∞(X). We
call a flow of the above form a (parabolic) complex Monge–Ampère flow.

Both the MA
1
3 flow and the Kähler–Ricci flow can be realized in the above

form. Recall that since we are working with a Kähler Calabi–Yau threefold
X, we have the Kähler form ω and the nowhere-vanishing holomorphic (3, 0)-
form Υ, which we shall use to define the function a. In particular, setting
H(ρ) = 12ρ

1
3 and a = 2 log ∥Υ∥ω, we get the MA

1
3 flow

∂

∂t
u = 12

(
e−2 log ∥Υ∥ω · det(ω +

√
−1∂∂u)

detω

) 1
3

(8.2)

from §6.3.

Likewise, if H(ρ) = 4 log ρ and a = 2 log ∥Υ∥ω, we get

∂

∂t
u = 4 log

(det(ω +
√
−1∂∂u)

∥Υ∥2ω · detω

)
, (8.3)

which can be seen to be the (rescaled) Kähler–Ricci flow. Indeed, by setting
ω̃ = ω +

√
−1∂∂u, we can check that

∂

∂t
u = 4 log

(det(ω +
√
−1∂∂u)

∥Υ∥2ω · detω

)
= −4 log ∥Υ∥ω̃, (8.4)
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and so

∂

∂t
ω̃ =

√
−1∂∂

( ∂
∂t
u
)
= −4

√
−1∂∂(log ∥Υ∥ω̃) = −4Ric(ω̃, J). (8.5)

The result that we shall need is as follows:

Theorem 8.1.1 (Picard–Zhang [PZ20]). Let X be a compact Kähler man-
ifold of complex dimension n with Kähler form ω. Let a ∈ C∞(X) and
H : R+ → R be a smooth function with H ′ > 0. Then the complex parabolic
Monge–Ampère equation (8.1) has a smooth solution u for all time t. More-
over, the function

ũ = u− 1

V
·
∫
X
u · ωn, where V =

∫
X
ωn (8.6)

converges in C∞(X, g) to a smooth function ũ∞ satisfying

(ω +
√
−1∂∂ũ∞)n = c0e

a · ωn, (8.7)

where c0 is a positive constant which can be determined by integration.

The evolving metrics ω̃ = ω +
√
−1∂∂u satisfy the uniform estimates

C−1 · g ≤ g̃ ≤ C · g, (8.8)

and
∥∇kω̃∥g ≤ Ck (8.9)

for positive uniform constants C and Ck for k ≥ 0.

Applying this to our Calabi–Yau threefold X and setting a = 2 log ∥Υ∥ω,
we get a family of Kähler metrics ω̃ = ω +

√
−1∂∂u ∈ [ω] which converge

in each Ck(X, g)-norm to a limiting metric ωCY ∈ [ω]. This limiting metric
satisfies

ωn
CY = 2c0∥Υ∥ω · ωn (8.10)

and from this, we can deduce that

∥Υ∥ωCY = 2c0 (8.11)

is constant. Hence ωCY is the unique Ricci-flat Kähler metric in the Kähler
class [ω].
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In addition to the uniform estimates from the theorem, we also require
exponential convergence of the flow, which are given by the estimates∥∥∥ ∂

∂t
∇kω̃

∥∥∥
g
≤ Cke

−λkt (8.12)

for constants Ck and λk. This was shown for the Kähler–Ricci flow by
Phong–Sturm [PS06]. We shall prove this for general Monge–Ampère flows.

Lemma 8.1.2. Let X be a compact Kähler manifold of complex dimension
n with Kähler form ω. Let u be a solution to (8.1) for some a ∈ C∞(X)
and some smooth function H : R+ → R with H ′ > 0.

Define the Kähler metrics ω̃ = ω+
√
−1∂∂u and ũ as in (8.6), then the flow

converges exponentially.

Proof. From [PZ20], we have the estimates

∥ũ∥Ck(X,g) ≤ Ck,
∣∣∣ ∂
∂t
ũ
∣∣∣ ≤ Ce−λt. (8.13)

To get the decay of higher-order derivatives of ũ, we use integration by parts.
For example, ∫

X

∥∥∥ ∂
∂t

∇ũ
∥∥∥2
g
· ωn =

∫
X

∣∣∣ ∂
∂t
ũ
∣∣∣ · ∣∣∣ ∂

∂t
∆ũ
∣∣∣ · ωn

≤ Ce−λt ·
∫
X

∣∣∣ ∂
∂t

∆u
∣∣∣ · ωn

≤ C · ∥∆H∥L∞(X,g) · e−λt

≤ C1e
−λ1t, (8.14)

since |∆H| ≤ ∥u∥C4(X,g) ≤ C. A similar calculation shows that∫
X

∥∥∥ ∂
∂t

∇kũ
∥∥∥2
g
ωn ≤ C · ∥∇k+1H∥L∞(X,g) · e−λt ≤ Cke

−λkt. (8.15)

Using the Sobolev Embedding Theorem, we have∥∥∥ ∂
∂t

∇kũ
∥∥∥
L∞(X,g)

≤ Cke
−λkt. (8.16)

Since ω̃ = ω +
√
−1∂∂ũ, we get (8.12).

Using these results on the underlying flows on the base, we will be able to
describe the long-term behaviour to the solutions described in Theorems
6.3.1 and 7.2.4.
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8.2 Limits at Infinity

We return to G2-geometry and discuss the convergence of the solutions φ̂.
We tackle both the Laplacian flow and coflow cases simultaneously since
their solutions were constructed in a similar manner.

Recall that in either case:

i) the flow is solved by the SU(3)-structure (ω̂, Υ̂) = (Θ∗ω̃,Θ∗Υ);

ii) the time-dependent family of Kähler triples (ω̃, J, g̃) on X come from

a complex Monge–Ampère flow (either the MA
1
3 flow or the Kähler–

Ricci flow);

iii) the Kähler metrics ω̃ satisfy the estimates from the previous section
and converge to the unique Ricci-flat Kähler metric ωCY in the Kähler
class [ω] in each Ck(X, g)-norm;

iv) the diffeomorphisms Θ solve ∂
∂tΘ = Y , where either

Y = −2∇̃(∥Υ∥−
2
3

ω̃ ) or Y = 2∇̃(log ∥Υ∥ω̃). (8.17)

To prove the convergence of (ω̂, Υ̂), we use a method similar to [LW19] to
show that the maps Θ converge to a diffeomorphism Θ∞.

Since the metrics ω̃ converge exponentially fast to ωCY along both the MA
1
3

flow and the Kähler–Ricci flow, and since ∥Υ∥ωCY is constant, it follows that
Y → 0 exponentially fast as well. Indeed, by (8.12) we see that

∥∇kY ∥g =

∫ ∞

t

( ∂
∂s

∥∇kY ∥g
)
ds ≤ C ·

∫ ∞

t
e−λs ds. (8.18)

Hence, for each k ≥ 0, we have the estimates

∥∇kY ∥g ≤ Cke
−λkt. (8.19)

We now consider the diffeomorphisms Θ. For every point p ∈ X and t1, t2 ≥
0, we have that

[t1, t2] → X : t 7→ Θt(p) (8.20)

defines a smooth path from Θt1(p) to Θt2(p). By our previous estimate
(8.19) on Y , we have

dg
(
Θt1(p),Θt2(p)

)
≤
∫ t2

t1

∥∥∥ ∂
∂t

Θ(p)
∥∥∥
g
dt
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≤
∫ t2

t1

∥Y ∥g dt

≤ C ·
∫ t2

t1

e−λt dt. (8.21)

It follows that the maps Θ converge uniformly with respect to the original
metric g. Similarly, using the uniform estimates (8.8) and (8.9) we have
that the maps Θ converge in each Ck(X, g)-norm. Thus, we have that they
converge to some limit map Θ∞ : X → X as t→ ∞ in each Ck(X, g)-norm.

We now show that the pullback Θ∗
∞ is not degenerate. For this, we estimate

∣∣∣ ∂
∂t

log
(Υ̂ ∧ Υ̂

Υ ∧Υ

)∣∣∣ = ∣∣∣ ∂
∂t

log
(Θ∗(Υ ∧Υ)

Υ ∧Υ

)∣∣∣
=
∣∣∣ 1

Θ∗(Υ ∧Υ)
· ∂
∂t

(
Θ∗(Υ ∧Υ)

)∣∣∣
=
∣∣∣Θ∗
(LY (Υ ∧Υ)

Υ ∧Υ

)∣∣∣
≤ sup

X

∣∣∣(LY (∥Υ∥2ω · vol)
∥Υ∥2ω · vol

)∣∣∣
≤ |Y (∥Υ∥2ω)|

∥Υ∥ω
+
∣∣∣d(Y ⌟ vol)

vol

∣∣∣ ≤ Ceλt (8.22)

using (8.19). As such

∣∣∣ log (Υ̂ ∧ Υ̂

Υ ∧Υ

)∣∣∣ ≤ ∫ t

0

∣∣∣ ∂
∂s

log
(Υ̂ ∧ Υ̂

Υ ∧Υ

)∣∣∣ ds
≤ C ·

∫ t

0
e−λs ds ≤ C (8.23)

is bounded independently of t. It follows that

C−1 · (Υ ∧Υ) ≤ Θ∗(Υ ∧Υ) ≤ C · (Υ ∧Υ) (8.24)

and hence the pullback is uniformly non-degenerate. We see that det(Θ∗)
is bounded independently of t and this estimate can be passed to the limit
map Θ∞.

By the Inverse Function Theorem, the limit map Θ∞ is a local diffeomor-
phism. Since Θ0 = IdX is the identity map and each Θ is a diffeomorphism
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which is isotopic to the identity, we have that Θ∞ is a surjective local dif-
feomorphism homotopic to the identity. Further, X is compact, and so Θ∞
is a covering map. Lastly, since Θ∞ is homotopic to the identity, it has
degree 1 and is thus injective. From this, we conclude that Θ∞ is indeed a
diffeomorphism.

Finally, we have that Θ → Θ∞ and ω̃ → ωCY with respect to the background
metric g. It follows that ω̂ = Θ∗ω̃ → Θ∗

∞ωCY and Υ̂ = Θ∗Υ → Θ∗
∞Υ also

with respect to g. As such, our solution on M converges to

φ̂→ φ̂∞ = Re (Θ∗
∞Υ)− dr ∧ (Θ∗

∞ωCY) (8.25)

in the Laplacian flow case and

φ̂→ φ̂∞ = Re
(
Θ∗

∞

[ 1

∥Υ∥ωCY

Υ
])

− dr ∧
(
Θ∗

∞(∥Υ∥ωCY · ωCY)
)

(8.26)

in the Laplacian coflow case.

Since ∥Υ∥ωCY is constant, we see that in either case, φ̂∞ defines a torsion-free
G2-structure.
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Appendix A

Identities for Hermitian
Metrics and Chern
Connections

We list some useful identities that will be used often. As before, we let X
be a Calabi–Yau n-fold with nowhere-vanishing holomorphic (n, 0)-form Υ.
Much of this appendix is based on §2.2 of [PPZ18b].

Given a Hermitian metric ω =
√
−1gjkdz

j∧dzk, we define its torsion tensors

T and T by
T =

√
−1∂ω and T = −

√
−1∂ω. (A.1)

This defines a (2, 1)- and (1, 2)-form respectively.

We can write these in local coordinates by

T =
1

2
Tmjkdz

m ∧ dzj ∧ dzk and T =
1

2
T jmkdz

j ∧ dzm ∧ dzk (A.2)

where
Tmjk = ∂jgmk − ∂mgjk and T jmk = ∂kgjm − ∂mgjk. (A.3)

It is convenient to define the tensors

Tm = gjkTmjk and Tm = gjkT jmk. (A.4)

We have the following result of Li–Yau [LY05], stated in a more general form.

Lemma A.0.1. Let X be a Calabi–Yau n-fold with nowhere-vanishing holo-
morphic (n, 0)-form Υ. Suppose ω is a Hermitian metric on X. Then the
following are equivalent:

i) ω satisfies the conformally balanced condition d
(
∥Υ∥aωωn−1

)
= 0 for

some constant a;
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Appendix A. Identities for Hermitian Metrics and Chern Connections

ii) d†ω =
√
−1(∂ − ∂) log ∥Υ∥aω; and

iii) Tm = ∂m log ∥Υ∥aω, Tm = ∂m log ∥Υ∥aω.

Proof. We can expand the (n, n− 1)-part of the conformally balanced con-
dition to get

∂ log ∥Υ∥aω ∧ ωn−1 + (n− 1)∂ω ∧ ωn−2 = 0. (A.5)

One can also check that for a (2, 1)-form A = 1
2Amjkdz

m ∧ dzj ∧ dzk, we
have

A ∧ ωn−2 = −
√
−1(gjkAmjkdz

m) ∧ ωn−1

n− 1
. (A.6)

In particular, taking A to be the torsion tensor T =
√
−1∂ω, we see that

the conformally balanced condition is equivalent to

∂ log ∥Υ∥aω ∧ ωn−1 = −(n− 1)∂ω ∧ ωn−2

=
√
−1(n− 1)T ∧ ωn−2

= Tmdz
m ∧ ωn−1. (A.7)

That is
(∂ log ∥Υ∥aω − Tmdz

m) ∧ ωn−1 = 0, (A.8)

and since the wedge product by ωn−1 is an isomorphism we get

∂ log ∥Υ∥aω − Tmdz
m. (A.9)

By taking complex conjugates, we see that i) and iii) are equivalent.

To get that the equivalence between ii) and iii), we use the expressions of
the adjoints of ∂ and ∂ on a (1, 1)-form A:

(∂
†
A)m = gjk(∇jAmk − TjAmk) and (∂†A)m = −gjk(∇kAjm − T kAjm).

(A.10)

If we set A = ω, then Ajk =
√
−1gjk which gives

(∂
†
ω)m = −

√
−1gjk(∇jgmk − Tjgmk) = −

√
−1Tm. (A.11)

Likewise
(∂†ω) =

√
−1Tm. (A.12)

151



Appendix A. Identities for Hermitian Metrics and Chern Connections

Putting this together, we have that given iii),

d†ω = ∂†ω + ∂
†
ω

= −
√
−1T +

√
−1T

=
√
−1(∂ − ∂) log ∥Υ∥aω. (A.13)

Conversely, if d†ω =
√
−1(∂ − ∂) log ∥Υ∥aω, then by type decomposition we

have
−
√
−1T = ∂†ω = −

√
−1∂ log ∥Υ∥aω, (A.14)

as desired.

We are interested in the case where the constant a = 1. Taking covariant
derivatives, we can check that

∇
( 1

2∥Υ∥ω

)
= −

( 1

2∥Υ∥ω

)
· T and ∇

( 1

2∥Υ∥ω

)
= −

( 1

2∥Υ∥ω

)
· T . (A.15)

In particular, repeated application of this yields

∇m∇l
( 1

2∥Υ∥ω

)
=
( 1

2∥Υ∥ω

)
·

∑
i1+...+ir+(r−s)=m

j1+...+js=l

(∇i1∇j1T ) ∗ . . . ∗ (∇is∇js
T )

∗ (∇is+1T ) ∗ . . . ∗ (∇irT ). (A.16)

We end with some general commutator identities covariant derivatives. If A
is a generic tensor, then

∇m∇l
(∆RA)

= ∆R(∇m∇l
A) +

m∑
i=0

l∑
j=0

(∇m−i∇l−j
A) ∗ (∇i∇j

Rm)

+
m∑
i=0

l∑
j=0

(∇m−i∇l+1−j
A) ∗ (∇i∇j

T )

+
m∑
i=0

l∑
j=0

(∇m+1−i∇l−j
A) ∗ (∇i∇j

T ), (A.17)
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also

∇l∇mA

=

min(m,l)∑
r=0

∑
i0+...+ir=m−r
j0+...+jr=l−r

(∇i0∇j0A) ∗ (∇i1∇j1Rm) ∗ . . . ∗ (∇ir∇jr
Rm).

(A.18)

Finally, we have the Divergence Theorem for the Chern connection:∫
X
∇iV

i =

∫
X
Ti · V i and

∫
X
∇jV

j =

∫
X
T j · V

j . (A.19)
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Appendix B

The (Local) Maps Φt

We collect several results regarding the maps Φt : C4 \ {0} → C4 introduced
in §1.2.1. First, recall that Φt was defined by

Φt(z) = z +
tz

2∥z∥2
(B.1)

Furthermore, for R ̸= 0, we had scaling maps SR : C4 → C4 given by

SR(z) = R
3
2 · z. (B.2)

In particular, we have the relation

Φt = S
t
1
3
◦ Φ1 ◦ S

t−
1
3
. (B.3)

Since the scaling maps are smooth, we can restrict our focus to the map Φ1.
In particular, we will show that the restriction

Φ1 :
{
z ∈ V0 | ∥z∥2 >

1

2

}
→ {z ∈ V1 | ∥z∥2 > 1} (B.4)

is a diffeomorphism, where the spaces Vt are defined by

Vt =
{
z ∈ C4 |

4∑
j=1

z2j = t
}
. (B.5)

Let z ∈ V0 and so z · z = z · z = 0. Taking norms, we have that

∥Φ1(z)∥2 =
(
z +

z

2∥z∥2
)
·
(
z +

z

2∥z∥2
)

= ∥z∥2 + z · z
2∥z∥2

+
z · z
2∥z∥2

+
∥z∥2

4∥z∥4

= ∥z∥2 ·
(
1 +

1

4∥z∥4
)
. (B.6)
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We can check where each level set of the cone V0 is mapped to by Φ1 by
considering the function

f(x) = x ·
(
1 +

1

4x2

)
, x > 0. (B.7)

It can be seen that f is strictly increasing on (12 ,∞). From this, we can
see that Φ1 is injective on {z ∈ V0 | ∥z∥2 > 1

2}. Indeed, suppose that
Φ1(z) = Φ1(z

′) where ∥z∥2 > 1
2 and ∥z′∥2 > 1

2 . The restriction of the domain
then implies that ∥z∥2 = ∥z′∥2. Splitting the equation Φ1(z) = Φ1(z

′) into
real and imaginary components and a straightforward computation shows
that z = z′.

Next, we find an inverse of the restriction Φ1. We first note that

g(x) =
1

2
(x+

√
x2 − 1), x > 1, (B.8)

defines an inverse for f : (12 ,∞) → (1,∞).

Let w ∈ V1 with ∥w∥2 = B > 1. By direct calculation, one can check that if

zj =
( 2g(B)

2g(B) + 1

)
· Re (wj)−

√
−1
( 2g(B)

2g(B)− 1

)
· Im (wj), (B.9)

then

z ∈ V0, ∥z∥2 = g(B) >
1

2
, and Φ1(z) = w. (B.10)

It follows that Φ1 is a bijection from {z ∈ V0 | ∥z∥2 > 1
2} to {z ∈ V1 | ∥z∥2 >

1}. Since the coordinate expressions for Φ1 and its inverse are smooth on
their domain, we see that Φ1 is a diffeomorphism. By composing with the
scaling maps and writing in terms of the radius function r(z) = ∥z∥

2
3 , we

have

Proposition B.0.1. The map

Φt :
{
z ∈ V0 | r(z) >

( |t|
2

) 1
3
}
→
{
z ∈ Vt | r(z) > |t|

1
3

}
(B.11)

is a diffeomorphism.
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Appendix C

Sasakian Manifolds

We review some basics on Sasakian manifolds and discuss some useful results
involving deformations of Sasakian structures. For more details, we refer the
reader to e.g., [Bla76, BG08, BGS08].

C.1 Contact and Almost-Contact Structures

We begin with a discussion on contact and almost-contact structures on
odd-dimensional manifolds.

Definition C.1.1. An contact structure on a (2n+1)-dimensional manifold
M is a 1-form η, called the contact form, such that

η ∧ (dη)n ̸= 0. (C.1)

On a contact manifold (M,η), it can be shown that there exists a unique
vector field ξ called the Reeb vector field such that

η(ξ) = 1 and ξ⌟ (dη) = 0. (C.2)

Using the Reeb vector field ξ, we obtain a 1-dimensional foliation Fξ, and
its dual 1-form η determines a codimension 1 subbundle D = ker η of TM .
We have a canonical splitting

TM = D ⊕ Lξ, (C.3)

where Lξ is the line bundle spanned by ξ.

Given a contact structure η on M , we would like to define a Riemannian
metric g in a suitable manner.
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Definition C.1.2. An almost-contact structure on a (2n+ 1)-dimensional
manifold M consists of a vector field ξ, a 1-form η, and an endomorphism
Φ of TM such that

η(ξ) = 1 and Φ2 = −IdTM + ξ ⊗ η. (C.4)

As a consequence of these relations, we also have the following which can be
found in [Bla76]:

Lemma C.1.3. If (ξ, η,Φ) is an almost-contact structure on M , then

Φ(ξ) = 0 and η ◦ Φ = 0. (C.5)

Additionally, the endomorphism Φ has pointwise rank 2n.

Proof. The conditions in (C.4) imply that

Φ2(ξ) = −ξ + η(ξ) · ξ = 0. (C.6)

Thus, either Φ(ξ) = 0 or Φ(ξ) is a non-trivial eigenvector of Φ with eigen-
value 0. The conditions again imply that

0 = Φ2
(
Φ(ξ)

)
= −Φ(ξ) + η

(
Φ(ξ)

)
· ξ, (C.7)

that is,
Φ(ξ) = η

(
Φ(ξ)

)
· ξ. (C.8)

If Φ(ξ) is a non-trivial eigenvector of Φ, then we must have η
(
Φ(ξ)

)
̸= 0,

and hence

0 = Φ2(ξ) = η
(
Φ(ξ)

)
· Φ(ξ) =

[
η
(
Φ(ξ)

)]2 · ξ ̸= 0, (C.9)

which is a contradiction. As such, Φ(ξ) = 0.

For the other relation, the we see that by the second condition in (C.4)

η
(
Φ(Y )

)
· ξ = Φ3(Y ) + Φ(Y )

= −Φ(Y ) + Φ
(
η(Y ) · ξ

)
+Φ(Y ) = 0 (C.10)

for any vector field Y . It follows that η ◦ Φ = 0.

To check the rank of Φ, we note that since Φ(ξ) = 0, we must have rankΦ <
2n+ 1. Suppose Φ(Y ) = 0. We then have

0 = Φ2(Y ) = −Y + η(Y ) · ξ (C.11)

and hence Y is some multiple of ξ. Thus, rankΦ = 2n.

157



C.1. Contact and Almost-Contact Structures

A Riemannian metric g on M is compatible with the almost-contact struc-
ture if

g
(
Φ(Y ),Φ(Z)

)
= g(Y,Z)− η(Y ) · η(Z), (C.12)

for any vector fields Y, Z on M . In this case, the quadruple (ξ, η,Φ, g) is
called a almost-contact metric structure. By setting Z = ξ, we can also see
that

η(Y ) = g(Y, ξ). (C.13)

Given an almost-contact metric structure, we can define a fundamental 2-
form ω by

ω(Y,Z) = g
(
Φ(Y ), Z

)
. (C.14)

Indeed, this is skew since

g
(
Φ(Y ), Z

)
= g
(
Φ2(Y ),Φ(Z)

)
− η
(
Φ(Y )

)
· η(Z)

= −g
(
Y,Φ(Z)

)
+ η(Y ) · g

(
ξ,Φ(Z)

)
= −g

(
Φ(Z), Y

)
+ η(Y ) ·

[
g
(
Φ(ξ),Φ2(Z)

)
+ η(ξ) · η

(
Φ(Z)

)]
= −g

(
Φ(Z), Y

)
.

(C.15)

Since rankΦ = 2n, one can additionally check that

η ∧ ωn ̸= 0. (C.16)

Proposition C.1.4. Let M be a (2n + 1)-dimensional contact manifold
with a contact form η, then there exists an almost-contact metric structure
(ξ, η,Φ, g) such that the fundamental 2-form ω satisfies ω = dη.

A quadruple (ξ, η,Φ, g) compatible with a contact structure η is called a
contact metric structure. Additionally, contact metric structures are not
unique.

Consider the cone C(M) = R+ ×M endowed with the metric

gC = dr ⊗ dr + r2 · g. (C.17)

We can define an almost-complex structure JC on C(M) by

JC(Y ) = Φ(Y ) + η(Y ) · r ∂
∂r
, JC

(
r
∂

∂r

)
= −ξ. (C.18)

An almost-contact metric structure (ξ, η,Φ, g) is called normal if
(
C(M), JC

)
is a complex manifold. In this case, the almost-complex structure J = Φ|D
is integrable.
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We can now define a Sasakian structure:

Definition C.1.5. A Sasakian structure S on a (2n+ 1)-dimensional con-
tact manifold M with contact form η is a normal contact metric structure
(ξ, η,Φ, g).

Given a Sasakian structure S, one can check that the restriction of the
metric g to D is a positive-definite symmetric form which we refer to as
the transverse Kähler metric. The transverse Kähler form of this metric is
ω = dη and the Sasakian metric g can be written as

g = dη ◦ (Id⊗ Φ) + η ⊗ η. (C.19)

C.2 Basic Forms and Deformations of Sasakian
Structures

Definition C.2.1. A k-form β on a contact manifold M is called basic if

ξ⌟β = 0, Lξβ = 0, (C.20)

where ξ is the Reeb vector field. The set of basic k forms will be denoted
by Ωk

B(M).

Using Cartan’s Magic Formula, one can see that the Lie derivative condition
is equivalent to ξ⌟ (dβ) = 0, and so the exterior derivative preserves basic
forms. Basic cohomology classes, denoted by [·]B, can be defined in the
usual way with the appropriate restrictions. Our previous discussion shows
that the transverse Kähler form ω is basic, and so its curvature tensors must
also be basic. This in part gives us a notion of basic Chern classes cBk (M).

One can check that given a Sasakian structure S = (ξ, η,Φ, g) on M , then

J
(
Ωk
B(M)

)
= Ωk

B(M). (C.21)

As such, we can decompose the complexified space in the expected manner:

Ωk
B(M)⊗ C =

⊕
p+q=k

Ωp,q
B (M). (C.22)

From this, we have the usual ∂ and ∂ operators, giving rise to a transverse
Hodge theory which largely mirrors the normal setting.
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Given a Sasakian structure S = (ξ, η,Φ, g) on M , we wish to deform it in a
manner that preserves the Reeb vector field ξ and the underlying transverse
structure. We let

F(ξ) = {Sasakian structures S ′ = (ξ′, η′,Φ′, g′) | ξ′ = ξ}. (C.23)

Given two Sasakian structures S,S ′ ∈ F(ξ), with contact forms η and η′

respectively, we have that their difference ζ = η − η′ is basic. As such,
[dη′]B = [dη]B and hence all Sasakian structures in F(ξ) have the same
basic cohomology class.

Consider the quotient bundle ν(Fξ) = TM/Lξ. This bundle has an in-
duced complex structure J and quotient map πν : TM → ν(Fξ). We de-
fine the subset F(ξ, J) ⊆ F(ξ) to be the subsect of Sasakians structures
(ξ′, η′,Φ′, g′) ∈ F(ξ) such that the diagram

TM TM

ν(Fξ) ν(Fξ)

Φ′

πν πν

J
(C.24)

commutes. These are the Sasakian structures with the same transverse
holomorphic structure J .

The following result is a transverse version of the
√
−1∂∂-Lemma.

Proposition C.2.2 (El Kacimi-Alaoui [EKA90]). Let M be a compact
Sasakian manifold and let ω and ω′ be real basic closed (1, 1)-forms such
that [ω]B = [ω′]B. Then there exists a basic function ζ such that

ω′ = ω +
√
−1∂∂ζ = ω + ddcζ, (C.25)

where dc =
√
−1
2 (∂ − ∂).

As in the Kähler case, the basic 2-form ω = dη can be written locally in
terms of a basic potential function ζ, i.e., dη = ddcζ, and so Sasakian
geometry is locally determined by a basic potential.

There exists a characterization of the space of Sasakian structures with fixed
Reeb vector field ξ and transverse holomorphic structure J as an affine space.
We will not require the full description, but will use the following:
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Definition C.2.3. Given a Sasakian structure S = (ξ, η,Φ, g) ∈ F(ξ, J) on
M , a transformation of the form η 7→ η′ = η + dcζ for a basic function ζ is
an instance of a deformation of type II. Such a transformation induces an
endomorphism Φ′ and metric g′ by

Φ′ = Φ−
(
ξ ⊗ (dcζ)

)
◦ Φ, (C.26)

g′ = dη′ ◦
(
Id⊗ Φ

)
+ η′ ⊗ η′. (C.27)

The ensuing Sasakian structure S ′ = (ξ, η′,Φ′, g′) also lies in F(ξ, J).
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Appendix D

Structures Induced from
G2-Structures

In this appendix, we overview the computations for the associated structures
given a G2-structure φ. In particular, we work with the Ansätze introduced
in §5.3.1 and §5.3.2.

D.1 Hermitian and Riemannian Metrics

Before we begin, we first note an important relation between a Hermitian
metric and its associated Riemannian metric.

Let g be a Riemannian metric and J be an almost-complex structure on
a 2n-dimensional manifold M such that g is Hermitian ( i.e., g(Y, Z) =
g(JY, JZ)). We have local real coordinates x1, y1, . . . , xn, yn such that

J
( ∂

∂xj

)
=

∂

∂yj
, J

( ∂

∂yj

)
= − ∂

∂xj
. (D.1)

In these coordinates, we have

g
( ∂

∂xj
,
∂

∂xk

)
= g
(
J
( ∂

∂xj

)
, J
( ∂

∂xk

))
= g
( ∂

∂yj
,
∂

∂yk

)
(D.2)

and

g
( ∂

∂xj
,
∂

∂yk

)
= g
(
J
( ∂

∂xj

)
, J
( ∂

∂yk

))
= g
( ∂

∂yj
,− ∂

∂xk

)
= −g

( ∂

∂yj
,
∂

∂xk

)
. (D.3)

Expanding everything out, we can write

g = g
( ∂

∂xj
,
∂

∂xk

)
dxj ⊗ dxk + g

( ∂

∂xj
,
∂

∂yk

)
dxj ⊗ dyk
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+ g
( ∂

∂yj
,
∂

∂xk

)
dyj ⊗ dxk + g

( ∂

∂yj
,
∂

∂yk

)
dyj ⊗ dyk. (D.4)

In matrix form, (reordering the basis to x1, . . . , xn, y1, . . . , yn) we have

gjk =

[
C D
−D C

]
(D.5)

for some real n×n matrices C,D with C symmetric and D skew-symmetric.

Complexifying, we have complex coordinates zj = xj +
√
−1yj , zj = xj −√

−1yj with

dzj = dxj +
√
−1dyj , dzj = dxj −

√
−1dyj , (D.6)

∂

∂zj
=

1

2

( ∂

∂xj
−
√
−1

∂

∂yj

)
,

∂

∂zj
=

1

2

( ∂

∂xj
+
√
−1

∂

∂yj

)
. (D.7)

One can then check that

g
( ∂

∂zj
,
∂

∂zk

)
= g
(1
2

( ∂

∂xj
−
√
−1

∂

∂yj

)
,
1

2

( ∂

∂xk
+
√
−1

∂

∂yk

))
=

1

4

[
g
( ∂

∂xj
,
∂

∂xk

)
+ g
( ∂

∂yj
,
∂

∂yk

)
+
√
−1g

( ∂

∂xj
,
∂

∂yk

)
−
√
−1g

( ∂

∂yj
,
∂

∂xk

)]
=

1

2

[
g
( ∂

∂xj
,
∂

∂xk

)
+
√
−1g

( ∂

∂xj
,
∂

∂yk

)]
, (D.8)

which in matrix form means

gjk =
1

2

[
C +

√
−1D

]
. (D.9)

Since [
In 0

−
√
−1In In

] [
C D
−D C

] [
In 0√
−1In In

]
=

[
C D

−D −
√
−1C C −

√
−1D

] [
In 0√
−1In In

]
=

[
C +

√
−1D D

0 C −
√
−1D

]
,
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we have

det

[
C D
−D C

]
= det(C +

√
−1D) det(C −

√
−1D). (D.10)

By the symmetry of C and the skew-symmetry of D, we see that C+
√
−1D

is Hermitian and so has real determinant. It follows that√
det gjk = 2n det gjk. (D.11)

Defining ω(Y,Z) = g(JY, Z), we have

ω =
√
−1gjkdz

j ∧ dzk. (D.12)

Thus

ωn

n!
= (

√
−1)n det gjk · dz

1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

= 2n det gjk · dx
1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn

=
√

det gjk · dx1 ∧ dy1 ∧ . . . dxn ∧ dyn

= vol.

D.2 Local Computations

We first note the following from e.g., [Kar09, Kar20]: Let φ be a G2-
structure on a 7-fold M . Given local coordinates, x1, . . . , x7, we define a
tensor B by

Bjkdx
1 ∧ . . . ∧ dx7 =

( ∂

∂xj
⌟φ
)
∧
( ∂

∂xk
⌟φ
)
∧ φ. (D.13)

From the relation (5.2), we see that this is also

Bjkdx
1 ∧ . . . ∧ dx7 = −6(gφ)jkvolφ = −6(gφ)jk

√
det(gφ) · dx1 ∧ . . . ∧ dx7.

(D.14)

The metric (gφ)jk and volume form volφ can be extracted with the identities

Bjk =
[( ∂

∂xj
⌟φ
)
∧
( ∂

∂xk
⌟φ
)
∧ φ
]( ∂

∂x1
, . . . ,

∂

∂x7

)
, (D.15)

164



D.2. Local Computations

Bjk = −6(gφ)jk

√
det(gφ), (D.16)

detB = −(67) det(gφ)
9
2 , (D.17)√

det(gφ) = − 1

6
7
9

(detB)
1
9 , (D.18)

(gφ)jk =
1

6
2
9

Bjk

(detB)
1
9

. (D.19)

In our setup, we have a Kähler Calabi–Yau threefold X with Kähler form ω
and non-vanishing holomorphic (3, 0)-form Υ. We define a G2-structure φ
on M = S1 ×X defined by

φ = Re
( F

∥Υ∥ω
Υ
)
−Gdr ∧ ω, (D.20)

where F is non-vanishing and G > 0.

Using the local coordinates r, x1, y1, x2, y2, x3, y3 on M and associated com-
plex coordinates zi = xi +

√
−1yi, we have

ω =
√
−1gjkdz

j ∧ dzk and Υ = fdz1 ∧ dz2 ∧ dz3. (D.21)

Additionally,

∥Υ∥2ω =
|f |2

det gpq
=

1

23
|f |2√
det gpq

. (D.22)

Direct computation shows that( ∂
∂r
⌟φ
)
∧
( ∂
∂r
⌟φ
)
∧ φ

= (−Gω) ∧ (−Gω) ∧
[
Re
( |F |
∥Υ∥ω

Υ
)
−Gdr ∧ ω

]
= −G3dr ∧ ω3

= −6G3
√

det gjk · dr ∧ dx1 ∧ dy1 ∧ . . . ∧ dx3 ∧ dy3. (D.23)

For j ∈ {1, 2, 3}, let j1, j2 be such that (j j1 j2) is a cyclic permutation of
(1 2 3). Then by considering type decomposition, we can see that( ∂

∂r
⌟φ
)
∧
( ∂

∂xj
⌟φ
)
∧ φ
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= (−Gω)︸ ︷︷ ︸
(1,1)

∧
( 1

2

Ff

∥Υ∥ω
dzj1 ∧ dzj2︸ ︷︷ ︸
(2,0)

+
1

2

Ff

∥Υ∥ω
dzj1 ∧ dzj2︸ ︷︷ ︸
(0,2)

+Gdr ∧
√
−1(gjkdz

k − gkjdz
k)
)

︸ ︷︷ ︸
dr∧(1,1)

∧
[
Re
( F

∥Υ∥ω
Υ
)

︸ ︷︷ ︸
(3,0)⊕(0,3)

− Gdr ∧ ω︸ ︷︷ ︸
dr∧[(1,0)⊕(0,1)]

]
= 0. (D.24)

Similarly, we see that ( ∂
∂r
⌟φ
)
∧
( ∂

∂yj
⌟φ
)
∧ φ = 0. (D.25)

If for k ∈ {1, 2, 3} we define k1, k2 analogously, we can check that( ∂

∂xj
⌟φ
)
∧
( ∂

∂xk
⌟φ
)
∧ φ

=
( 1

2

Ff

∥Υ∥ω
dzj1 ∧ dzj2︸ ︷︷ ︸
(2,0)

+
1

2

Ff

∥Υ∥ω
dzj1 ∧ dzj2︸ ︷︷ ︸
(0,2)

+Gdr ∧
√
−1(gjpdz

p − gpjdz
p)
)

︸ ︷︷ ︸
dr∧[(1,0)⊕(0,1)]

∧
( 1

2

Ff

∥Υ∥ω
dzk1 ∧ dzk2︸ ︷︷ ︸
(2,0)

+
1

2

Ff

∥Υ∥ω
dzk1 ∧ dzk2︸ ︷︷ ︸
(0,2)

+Gdr ∧
√
−1(gkqdz

q − gqkdz
q)
)

︸ ︷︷ ︸
dr∧[(1,0)⊕(0,1)]

∧
[
Re
( F

∥Υ∥ω
Υ
)

︸ ︷︷ ︸
(3,0)⊕(0,3)

−Gdr ∧ ω︸ ︷︷ ︸
dr∧(1,1)

]
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=
(1
2

Ff

∥Υ∥ω
dzj1 ∧ dzj2

)
∧
(1
2

Ff

∥Υ∥ω
dzk1 ∧ dzk2

)
∧ (−Gdr ∧ ω)

+
(1
2

Ff

∥Υ∥ω
dzj1 ∧ dzj2

)
∧ (−Gdr ∧

√
−1gjkdz

j)

∧
(1
2

Ff

∥Υ∥ω
dz1 ∧ dz2 ∧ dz3

)
+
(1
2

Ff

∥Υ∥ω
dzj1 ∧ dzj2

)
∧
(1
2

Ff

∥Υ∥ω
dzk1 ∧ dzk2

)
∧ (−Gdr ∧ ω)

+
(1
2

Ff

∥Υ∥ω
dzj1 ∧ dzj2

)
∧ (Gdr ∧

√
−1gkjdz

j)

∧
(1
2

Ff

∥Υ∥ω
dz1 ∧ dz2 ∧ dz3

)
+ (Gdr ∧

√
−1gjkdz

k) ∧
(1
2

Ff

∥Υ∥ω
dzk1 ∧ dzk2

)
∧
(1
2

Ff

∥Υ∥ω
dz1 ∧ dz2 ∧ dz3

)
+ (−Gdr ∧

√
−1gkjdz

k) ∧
(1
2

Ff

∥Υ∥ω
dzj1 ∧ dzj2

)
∧
(1
2

Ff

∥Υ∥ω
dz1 ∧ dz2 ∧ dz3

)
= −3

4

|F |2|f |2

∥Υ∥2ω
G
√
−1
(
gjk + gkj

)
dr ∧ dz1 ∧ dz2 ∧ dz3 ∧ dz1 ∧ dz2 ∧ dz3

= −6
|F |2|f |2

∥Υ∥2ω
G
(
gjk + gkj

)
dr ∧ dx1 ∧ dy1 ∧ . . . ∧ dx3 ∧ dy3

= −6
|F |2|f |2

∥Υ∥2ω
Gg
( ∂

∂xj
,
∂

∂xk

)
dr ∧ dx1 ∧ dy1 ∧ . . . ∧ dx3 ∧ dy3. (D.26)

Similar computations show that( ∂

∂yj
⌟φ
)
∧
( ∂

∂yk
⌟φ
)
∧ φ

= −6
|F |2|f |2

∥Υ∥2ω
Gg
( ∂

∂yj
,
∂

∂yk

)
dr ∧ dx1 ∧ dy1 ∧ . . . ∧ dx3 ∧ dy3, (D.27)

( ∂

∂xj
⌟φ
)
∧
( ∂

∂yk
⌟φ
)
∧ φ
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= −6
|F |2|f |2

∥Υ∥2ω
Gg
( ∂

∂xj
,
∂

∂yk

)
dr ∧ dx1 ∧ dy1 ∧ . . . ∧ dx3 ∧ dy3. (D.28)

With respect to the basis r, x1, x2, x3, y1, y2, y3, the matrix B is then

B = −6G

G
2
√
det gjk 0 0

0 |F |2|f |2
∥Υ∥2ω

C |F |2|f |2
∥Υ∥2ω

D

0 − |F |2|f |2
∥Υ∥2ω

D |F |2|f |2
∥Υ∥2ω

C


= −6G

√
det gjk

G
2 0 0

0 |F |2
23
C |F |2

23
D

0 − |F |2
23
D |F |2

23
C


= −6G

√
det gjk

[
G2 0

0 |F |2
23
gjk

]
, (D.29)

which has determinant

detB = (−6)7
|F |12

218
G9(det gjk)

9
2 . (D.30)

As such, it follows that gφ is given by

gφ =
−6G

√
det gjk

6
2
9 (−6)

7
9 |F |

4
3G
√
det gjk

[
G2 0

0 |F |2
23
gjk

]

=

[
4|F |−

4
3G2 0

0 1
2 |F |

2
3 gjk

]
, (D.31)

that is

gφ = 4|F |−
4
3G2dr ⊗ dr +

1

2
|F |

2
3 gjk. (D.32)

From this, we can verify the expressions for the other induced structures
such as the volume form volφ and the Hodge star ⋆φ. A similar argument
handles the setting on a contact Calabi–Yau 7-fold.
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