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Non-Kähler Calabi–Yau Geometry



The Setting

Definition 1.1: Calabi–Yau 3-Folds

A Calabi–Yau 3-fold is a complex manifold X of complex dimension 3
with finite fundamental group and trivial canonical bundle.

Remark 1.2: Ricci-Flatness and Yau’s Theorem

We do not require X to admit a Kähler metric ω. If it does, then by Yau’s
theorem, we get a Ricci-flat Kähler metric ωCY ∈ [ω].
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Conifold Transitions

X̂

O(−1)⊕O(−1)→ P1

Ei π

X0

{
∑

z2
j = 0} ⊆ C4 si

Φt

Xt

{
∑

z2
j = t} ⊆ C4

Figure 1: A conifold transition contracts curves on X̂ to points on X0 and smooths them out
to 3-spheres on Xt .

A conifold transition X̂ → X0 ⇝ Xt is a process of deforming one complex
compact 3-fold into another.

Locally, it takes neighbourhoods that look like O(−1)⊕O(−1)→ P1 and applies
a blowdown map π, before smoothing out the resulting singularities.
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Friedman’s Condition

In order to do this globally, we need Friedman’s condition.

Theorem 1.3: (R. Friedman ‘86)

A first-order deformation of X0 smoothing the singularities si = π(Ei) exists
if and only if there exist λi ̸= 0 such that∑

i

λi [Ei ] = 0 in H2(X̂ ,R). (1.1)

Kawamata–Tian ‘92 show that if we have the
√
−1∂∂-lemma, we get genuine

smoothings from the first-order ones.

If we start a conifold transition with a Calabi–Yau 3-fold, the resulting manifolds
are still Calabi–Yau.
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Reid’s Fantasy

Fantasy 1.4: (Reid ‘87)

All compact Calabi–Yau 3-folds are connected by a sequence of coni-
fold transitions.

This has been verified for large classes of Calabi–Yau 3-folds.
(Candelas–Green–Hübsch ‘90, Avram–Candelas–Jančić–Mandelberg ‘96, ...)
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Topological Changes

X̂

π

X0

Φt

Xt

Figure 2: A conifold transition contracts curves on X̂ to points on X0 and smooths them out
to 3-spheres on Xt .

Topologically, a conifold transition contracts 2-cycles from the small resolution
and generates 3-cycles on the smoothing.

In particular, if we contract N curves with k linearly independent curves

b2(Xt ) = b2(X̂)− k, b3(Xt ) = b3(X̂) + 2(N − k). (1.2)
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A Non-Kähler Example

Let X̂ = {
∑3

i=0 z5
i = 0} ⊆ P4. In this case X̂ is Kähler and b2(X̂) = 1.

If we pick 2 linearly dependent curves E1 and E2 and apply a conifold transition,
the resulting smoothing Xt has b2(Xt ) = 0.

The Kähler condition is NOT preserved by conifold transitions.

This suggests that our main objects of study should include those non-Kähler
manifolds obtained from Kähler ones through conifold transitions.

Question 1.5: Model Geometry

What model geometry should we endow these spaces with?

Whatever this geometry is, it should generalize the Ricci-flat Kähler condition.
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Compatible Geometries

It is conjectured that the general framework for compact non-Kähler
Calabi–Yau geometry should involve not one, but a pair of compatible metrics
that are unique in appropriate cohomology classes.

The compatibility condition is conjectured to come from the Hull–Strominger
system:

Let X be a Calabi–Yau 3-fold and E → X a holomorphic vector bundle. We
have a nowhere vanishing holomorphic (3, 0)-form Ω.

For a fixed constant α′ ∈ R, we have the Hull–Strominger system which wants a
pair of metrics H on E and ω on X such that

F2,0
H = F0,2

H = 0, F1,1
H ∧ ω2 = 0, (1.3)√

−1∂∂ω = α′(tr (Rmω ∧ Rmω)− tr (FH ∧ FH)
)
, (1.4)

d(∥Ω∥ωω2) = 0. (1.5)

The curvatures Rmω and FH are Chern curvatures.
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The Hull–Strominger System

F2,0
H = F0,2

H = 0, F1,1
H ∧ ω2 = 0, (1.3)√

−1∂∂ω = α′(tr (Rmω ∧ Rmω)− tr (FH ∧ FH)
)
, (1.4)

d(∥Ω∥ωω2) = 0. (1.5)

This system of equations arises from heterotic string theory, characterized in
terms of SU(3)-structures.

The first equation is a Hermitian Yang–Mills condition between the metrics ω and
H.

The second equation is called the heterotic Bianchi identity and comes from
the Green–Schwarz anomaly cancellation. The constant α′ is called the slope
parameter.

The third equation is a conformally balanced condition using the dilaton ∥Ω∥ω .
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Generalizing the Kähler Condition

F2,0
H = F0,2

H = 0, F1,1
H ∧ ω2 = 0, (1.3)√

−1∂∂ω = α′(tr (Rmω ∧ Rmω)− tr (FH ∧ FH)
)
, (1.4)

d(∥Ω∥ωω2) = 0. (1.5)

If X admits a Ricci-flat Kähler metric ω, we can set E = T 1,0X , and H = ω. Doing
this solves the Hull–Strominger system.

From this, we can consider solving the Hull–Strominger system as a
generalization of the Ricci-flat Kähler condition.
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Geometrizing Conifold Transitions



Local Models

X̂

π

X0

Φt

Xt

Figure 3: A conifold transition contracts curves on X̂ to points on X0 and smooths them out
to 3-spheres on Xt .

The local neighbourhoods involved in a conifold transition are:

the small resolution V̂ = O(−1)⊕O(−1)→ P1;

the cone V0 = {z2
1 + z2

2 + z2
3 + z2

4 = 0} ⊆ C4;

the smoothing Vt = {z2
1 + z2

2 + z2
3 + z2

4 = t} ⊆ C4.
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Local Metrics

Candelas–de la Ossa ‘90 constructed Ricci-flat Kähler metrics on the local
models.

This resulted in metrics ω̂co,a on V̂ and metrics ωco,t on each Vt that are
asymptotically conical and have a nice scaling property.

The metric ωco,0 on V0 is the cone metric

dr ⊗ dr + r2 · gS2×S3 . (2.1)

These were constructed by using an Ansatz involving an appropriate “radius”
function on the local models and imposing the Ricci-flat condition.
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Balanced Metrics

Suppose we start a conifold transition X̂ → X0 ⇝ Xt with a Kähler Calabi–Yau
3-fold X̂ with Kähler metric ω̂. Then by Yau’s theorem we have a Calabi–Yau
metric ω̂CY ∈ [ω̂].

Fu–Li–Yau ‘12 used this metric and constructed balanced (non-Kähler) metrics
ω̂FLY ,a on X̂ via a gluing process.

A similar process can be done on the smoothings Xt to get balanced metrics
ωFLY ,t , however this requires an additional pullback and perturbation step as the
Xt are distinct spaces.

These metrics are locally modelled on the Candelas–de la Ossa metrics and
converge uniformly to the metric ωFLY ,0 on the conifold.
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Hermitian Yang–Mills Metrics

In the case where X̂ is also simply connected, Collins–Picard–Yau ‘24
constructed new metrics Ĥa on X̂ and Ht on Xt that are Hermitian Yang–Mills
with respect to the Fu–Li–Yau metrics.

These were constructed using a stability argument and an analog of the
Donaldson–Uhlenbeck–Yau theorem, starting with the original Calabi–Yau
metric ω̂CY .

Taking a limiting metric and applying a similar gluing, pullback, and
perturbation process yields the desired metrics.
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Conifold Transitions are Continuous

Since conifold transitions pass through singular spaces and cause jumps in Betti
numbers, these allow us to traverse the moduli space of compact Calabi–Yau
3-folds.

We expect this to be continuous in some sense.

Theorem 2.1: (B. Friedman–Picard–S. ‘24)

Let X̂ be a compact Kähler Calabi–Yau 3-fold and let X̂ → X0 ⇝ Xt be a
conifold transition. The geometries (X̂ , ĝFLY ,a , Ĥa) and (Xt ,gFLY ,t ,Ht ) vary
continuously in the Gromov–Hausdorff sense and

(X̂ , ĝFLY ,a)→(X0,dg0 )← (Xt ,gFLY ,t )

(X̂ , Ĥa)→(X0,dH0
)← (Xt ,Ht ) (2.2)

as a, t → 0 in the Gromov–Hausdorff topology.

The proof involves measuring lengths of curves using the various metrics. This
was done by splitting regions close to the exceptional sets/singularities into two
regions and comparing them with model spaces with reference metrics.
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Anomaly Cancellation

The metrics constructed so far only partially solve the Hull–Strominger system.

F2,0
H = F0,2

H = 0, F1,1
H ∧ ω2 = 0, (1.3)√

−1∂∂ω = α′(tr (Rmω ∧ Rmω)− tr (FH ∧ FH)
)
, (1.4)

d(∥Ω∥ωω2) = 0. (1.5)

The Fu–Li–Yau metrics are balanced and the Collins–Picard–Yau metrics satisfy
the Hermitian Yang–Mills property, but these together do not solve the heterotic
Bianchi identity.

It is expected that full solutions are close to these and can be achieved
through perturbative methods.
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Anomaly Flow and Long-Time Existence



Anomaly Flow

In order to solve the Hull–Strominger system, Phong–Picard–Zhang proposed the
anomaly flow:

∂t
(
∥Ω∥ωω2) =

√
−1∂∂ω − α′(tr (Rmω ∧ Rmω)− Φ

)
. (3.1)

Here Φ is a prescribed closed (2, 2)-form in c2(X) that can evolve in time.

Chern–Weil theory tells us that the conformally balanced condition is preserved
since the RHS is closed.
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Coupled Flows

The anomaly flow only evolves the metric ω.

To get full solutions to the Hull–Strominger system, we can couple it with another
flow on the metric H on E and prescribe Φ appropriately:

H−1∂t H = −ΛωFH , (3.2)

∂t
(
∥Ω∥ωω2) =

√
−1∂∂ω − α′(tr (Rmω ∧ Rmω)− tr (FH ∧ FH)

)
. (3.3)
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Properties of the Anomaly Flow

Short-time existence has been shown (Phong–Picard–Zhang ‘18).

Long-time existence has been shown under certain conditions:

when α′ = 0 over Kähler manifolds (Phong–Picard–Zhang ‘18);

on T 2-fibrations over K3 surfaces (Phong–Picard–Zhang ‘18);

on unimodular Lie groups (Phong–Picard–Zhang ‘19);

on T 4-fibrations over Riemann surfaces of genus ≥ 2 (Fei–Huang–Picard ‘21);

on almost-Abelian Lie groups (using non-Chern connections) (Pujia ‘21);

on nilmanifolds (using non-Chern connections) (Pujia–Ugarte ‘21);
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Extending the Anomaly Flow

In the general case, we have the following:

Theorem 3.1: (S. ‘24)

Suppose that there exist positive constants B,C0 such that

B−1 ≤
( 1

2∥Ω∥ω

)
≤ B, |T |, |T |, |Rm|, |DT |, |DT | ≤ C0 (3.4)

along the anomaly flow (3.1) on t ∈ [0, τ). If α′ is sufficiently small, then
the flow can be extended to [0, τ + ϵ) for some ϵ > 0.
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Sketch of Proof



A Hopeful Line of Attack

A general method would ideally follow the method for the α′ = 0 case:

Rewrite the flow to get evolution equations for the metric, curvature, and
torsion;

Compute Shi-type estimates for the curvature and torsion;

Use the maximum principle to get higher regularity for the curvature and
torsion;

Use a bootstrapping argument to show that all derivatives of curvature
and torsion are bounded;

Use that all derivatives are bounded to get long-time existence.

We will try this and highlight difficulties along the way.
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Starting Assumptions

We start a bit more generally and assume some higher amount of regularity at
first.

Suppose for k ≥ 1 that there exist positive constants B,C0,C1, . . . ,Ck−1 such
that

B−1 ≤
( 1

2∥Ω∥ω

)
≤ B, (3.5)

|DqRm|, |Dq+1T |, |Dq+1T | ≤ Cq for 1 ≤ q ≤ k − 1, (3.6)

|T |, |T |, |Rm|, |DT |, |DT | ≤ C0, (3.7)

along the anomaly flow on t ∈ [0, τ).

Remark 3.2: Bars

The barred quantities do not matter as much since the Ricci identity
and other commutator identities can be used to estimate them from
the unbarred ones (at the cost of another constant).

Suppose also that Φ always has enough regularity (or for simplicity, assume
Φ = 0)
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Evolution Equations

The first step has already been done.

Theorem 3.3: (Phong–Picard–Zhang ‘18)

Under the anomaly flow (3.1), the metric, curvature, and torsion evolve
by

∂t g =
( 1

2∥Ω∥ω

)[
Rm + T ∗ T + α′(Rm ∗ Rm +Φ

)]
, (3.8)

∂t Rm =
( 1

2∥Ω∥ω

)[1
2
∆RRm + H1 + α′(∇∇(Rm ∗ Rm) + H2

)]
, (3.9)

∂t T =
( 1

2∥Ω∥ω

)[1
2
∆RT + K1 + α′(∇(Rm ∗ Rm) + K2

)]
. (3.10)

Here H1,H2 have at most 2 derivatives of T and T and 1 derivative on Rm.
Similarly, K1,K2 have at most 1 derivatives of T and T and no derivatives
on Rm.

We can use these to get evolution equations ∂t |Dk Rm|2 and ∂t |Dk+1T |2 for
norms of derivatives of curvature and torsion. 24



Pointwise Estimates

After many applications of the CBS inequality and Young’s inequality, we get
some pointwise estimates.

In particular, for k ≥ 2 we can define a test function

Gk = |Dk Rm|2 + |Dk+1T |2 (3.11)

and get

∂t Gk ≤
1
2

( 1
2∥Ω∥ω

)
∆RGk − B−1Gk+1

+
∑

m+l=k

2Re
(
∇j

〈( α′

2∥Ω∥ω

)
∇m+1∇l

(Rm ∗ Rm),∇m∇lRm
〉j)

+
∑

m′+l′=k+1

2Re
(
∇i

〈( α′

2∥Ω∥ω

)
∇m′
∇l′

(Rm ∗ Rm),∇m′
∇l′T

〉i)
+ Cϵ−1(1 + Gk

)
+

[
Cϵ+ 6a0BC0α

′]Gk+1.

(3.12)

The terms in red are higher-order but non-Laplacian and so we cannot appeal
to the maximum principle to deal with them.
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Integral Estimates

To deal with the extra terms, we integrate and use Lp-norms instead.

By integrating, we get that

∂t

(∫
X

Gp
k

)
≤

p
2

∫
X

( 1
2∥Ω∥ω

)
Gp−1

k · (∆RGk )− B−1p
∫

X
Gp−1

k ·Gk+1

+
∑

m+l=k

2pRe
(∫

X
Gp−1

k · ∇j

〈( α′

2∥Ω∥ω

)
∇m+1∇l

(Rm ∗ Rm),∇m∇lRm
〉j)

+
∑

m′+l′=k+1

2pRe
(∫

X
Gp−1

k · ∇i

〈( α′

2∥Ω∥ω

)
∇m′
∇l′

(Rm ∗ Rm),∇m′
∇l′T

〉i)
+ Cϵ−1

∫
X

Gp−1
k ·

(
1 + Gk

)
+

[
Cϵ+ 6a0BC0α

′p
] ∫

X
Gp

k ·Gk+1.

(3.13)
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Integration by Parts

Applying the Divergence Theorem and rearranging, this gives

∂t

(∫
X

Gp
k

)
≤ Cϵ−1

∫
X

(
1 + Gp

k

)
+

[
Cϵ+ 4a0BC0α

′p
(
p +

1
2

)
− B−1p

] ∫
X

Gp−1
k ·Gk+1

+
[
Cϵ+ 4a0BC0α

′p(p − 1)− B−1p(p − 1)
] ∫

X
Gp−2

k · |∇Gk |2.

(3.14)

This mean that if

α′ <
1

4a0B2C0
(
p + 1

2

) , (3.15)

then we can pick ϵ = ϵ(k, α′,p) such that the blue terms are negative.

This leaves us with

∂t

(∫
X

Gp
k

)
≤ C + C

∫
X

Gp
k , (3.16)

for some constant C = C(k, α′,p).
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Grönwall’s Inequality

Proposition 3.4: Grönwall’s Inequality

Let β and u be real-valued continuous functions defined on an interval
[a,b). If u is differentiable on (a,b) with

u′(t) ≤ β(t) · u(t), t ∈ (a,b), (3.17)

then

u(t) ≤ u(a) exp
(∫ t

a
β(s)ds

)
, t ∈ [a,b). (3.18)

Applying this to the functions

u = 1 +

∫
X

Gp
k , β = C, (3.19)

we conclude that∫
X

Gp
k (t) ≤

(
1 +

∫
X

Gp
k (0)

)
eCt <

(
1 +

∫
X

Gp
k (0)

)
eCτ . (3.20)
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Uniform Boundedness of L2p-Norms

Overall, we see that if α′ is sufficiently small, then∫
X

Gp
k =

∫
X

(
|Dk Rm|2 + |Dk+1T |2

)p
(3.21)

is uniformly bounded along the flow.

Importantly, this bound does not depend on k for bootstrapping later.

By taking a 2p-th root, we see that

|Dk Rm| and |Dk+1T | (3.22)

are uniformly L2p-bounded.

Remark 3.5: “p-Values”

This argument only works for p ≥ 3, but since X is compact, we can use
Hölder’s inequality to get this for 1 ≤ p < 3.
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Reobtaining Pointwise Estimates

We now have uniform L2p-bounds for |Dk Rm| and |Dk+1T |, but we need to get
pointwise ones back.

To do this, we appeal to an argument of Hamilton ’82 and use the Sobolev
Embedding Theorem.

If we get uniform L2p-bounds on |Dk+1Rm| and |Dk+2T | for large enough p, then
the Sobolev Embedding Theorem will give uniform L∞-bounds for |Dk Rm| and
|Dk+1T | along the flow.
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Higher-Order Estimates

We can repeat the previous steps for k ≥ 3 with the test function

Gk+1 = |Dk+1Rm|2 + |Dk+2T |2. (3.23)

This gives

∂t

(∫
X

Gp
k+1

)
≤ C(ϵ′)−1

∫
X

(
1 + Gp

k + Gp
k+1

)
+

[
Cϵ′ + 4a0BC0α

′p
(
p +

1
2

)
− B−1p

] ∫
X

Gp−1
k+1 ·Gk+2

+
[
Cϵ′ + 4a0BC0α

′p(p − 1)− B−1p(p − 1)
] ∫

X
Gp−2

k+1 · |∇Gk+1|2.

(3.24)

The Grönwall’s Inequality argument gives the same condition on α′:

α′ <
1

4a0B2C0(p + 1
2 )

. (3.25)

If this holds, we see that there exists some positive constant Ck such that

|Dk Rm|, |Dk+1T |, |Dk+1T | ≤ Ck . (3.26)
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Bootstrapping

Using a bootstrapping argument, we get

Proposition 3.6: k = 3

Suppose our starting assumptions hold for k = 3. If

α′ <
1

14a0B2C0
, (p = 3 is sufficient) (3.27)

then there exist positive constants Cq for q ≥ 3 such that

|DqRm|, |Dq+1T |, |Dq+1T | ≤ Cq (3.28)

along the anomaly flow on [0, τ).
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Additional Complications

When k is small, some terms gain some extra higher-order dependence in their
bounds.

For example, if k = 2, then the terms

|D2Rm|, |D3Rm|, |D4Rm| (3.29)

are a priori unknown and have no bounds.

Our earlier method tried to obtain terms at most quadratic in these unknowns.
In this case, however

⟨D4(Rm∗Rm),D4Rm⟩ ≤ C|D4Rm|2+C|D3Rm|·|D4Rm|+C|D2Rm|2 ·|D4Rm|. (3.30)
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The k = 2 Case

This case is not too bad because we have the estimates on Gk as a start. (We
only needed k ≥ 3 for the estimates on Gk+1).

The main difference here is that instead of

∂t

(∫
X

Gp
k+1

)
≤ C(ϵ′)−1

∫
X

(
1 + Gp

k + Gp
k+1

)
+

[
Cϵ′ + 4a0BC0α

′p
(
p +

1
2

)
− B−1p

] ∫
X

Gp−1
k+1 ·Gk+2

+
[
Cϵ′ + 4a0BC0α

′p(p − 1)− B−1p(p − 1)
] ∫

X
Gp−2

k+1 · |∇Gk+1|2.

(3.31)

we get

∂t

(∫
X

Gp
3

)
≤ C(ϵ′)−1

∫
X

(
1 + Gp

2 + G2p
2 + Gp

3

)
+

[
Cϵ′ + 4a0BC0α

′p
(
p +

1
2

)
− B−1p

] ∫
X

Gp−1
3 ·G4

+
[
Cϵ′ + 4a0BC0α

′p(p − 1)− B−1p(p − 1)
] ∫

X
Gp−2

3 · |∇G3|2.

(3.32)
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A Slightly Tighter Bound

To compensate for the G2p
2 appearing, we need to adjust our condition on α′

to ensure that
∫

X G2p
2 is uniformly bounded:

α′ <
1

4a0B2C0(2p + 1
2 )

(3.33)

This improves our result to

Proposition 3.7: k = 2

Suppose our starting assumptions hold for k = 2. If

α′ <
1

26a0B2C0
, (p = 3 is sufficient) (3.34)

then there exist positive constants Cq for q ≥ 2 such that

|DqRm|, |Dq+1T |, |Dq+1T | ≤ Cq (3.35)

along the anomaly flow on [0, τ).
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The k = 1 Case

This case is more complicated since we need to reprove the estimates on Gk .

We actually need a more complicated test function

G =
[
α′(|Rm|2 + |DT |2

)
+ µ

]
·
(
|DRm|2 + |D2T |2

)
=

[
α′G0 + µ

]
·G1. (3.36)

Here, the constant µ is to be determined later.
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“Fun” Conditions

Going through the steps, we eventually get

∂t

(∫
X

Gp
)

≤ Cϵ−1
∫

X

(
1 + Gp)

+
[
Cϵ+ 6a0BC2

0(α
′)2µ−1p(p − 1) + 10a0Bα′p(p − 1)

− B−1p(p − 1)
] ∫

X
Gp−2 · |∇G|2

+
[
Cϵ+ 140a0BC2

0(α
′)2p + 26a0BC2

0(α
′)2p(p − 1) + 86a0BC0(α

′)2p

+ 10a0Bα′µp2 +
1
2

B−1α′p − B−1α′p
] ∫

X
Gp−1 ·G2

1

+
[
Cϵ+ 20a0BC4

0(α
′)2p(p − 1) + 8320B3C2

0α
′p + 12a0BC3

0(α
′)2p

+ 128a0BC2
0(α

′)2p + 10a0BC2
0α

′µp(p − 1)

+ 6a0BC0α
′µp + 4a0Bα′µp − B−1µp

] ∫
X

Gp−1 ·G2.

(3.37)
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New Bounds

To make the blue terms negative, we need to solve the system which works
when

α′ <
1

106a0B6 max(1,C0)2p
, µ =

1
100a0B2p

. (3.38)

To get the higher-order estimates, we follow the same method for the test
function

G′ =
[
α′(|Rm|2 + |DT |2

)
+ µ′] · (|D2Rm|2 + |D3T |2

)
=

[
α′G0 + µ′] ·G2. (3.39)

A similar system appears and can be solved if

α′ <
1

107a0B6 max(1,C0)2p
, µ =

1
100a0B2p

. (3.40)
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The Final Upgrade

From this, we can again upgrade our proposition

Proposition 3.8: k = 1

Suppose our starting assumptions hold for k = 1. If

α′ <
1

3 · 107a0B6 max(1,C0)2
, (p = 3 is sufficient) (3.41)

then there exist positive constants Cq for q ≥ 1 such that

|DqRm|, |Dq+1T |, |Dq+1T | ≤ Cq (3.42)

along the anomaly flow on [0, τ).

Now that all derivatives are uniformly bounded, we can now invoke the
argument of Phong–Picard–Zhang ‘18 to extend the flow.

39



Miscellany

Remark 3.9: Dimensionality

The bounds we get for the k = 1 and the k ≥ 2 cases are interesting
since they can be rewritten as

α′ · |Rm|2 < Π1, (k = 1), (3.43)

α′ · |Rm| < Π2, (k ≥ 2) (3.44)

for dimensionless constants Π1,Π2. The units on the LHS of each differ but
both RHS are dimensionless.

Question 3.10: Rescaling

Are there rescaling methods to go further with this result?

Question 3.11: Coupling Flows

Can this be done while coupling the anomaly flow with another flow on
H and setting Φ = tr (FH ∧ FH)? 40



Fin

Thank you for your attention.

Questions?

41
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