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Conifold Transitions
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Figure: A Conifold Transtion

A conifold transition X̂ → X0 ⇝ Xt is a process of deforming one complex
3-fold into another.

Locally, it takes neighbourhoods that look like O(−1)⊕O(−1)→ P1 and
applies a blowdown map π, before smoothing out the resulting singularities.
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Friedman’s Condition and Reid’s Fantasy

In order to do this globally, we need Friedman’s condition.

Theorem 1.1 (R. Friedman)
A first-order deformation of X0 smoothing the singularities si = π(Ei) exists if
and only if there exist λi ̸= 0 such that∑

i

λi [Ei ] = 0 in H2(X̂ ,R). (1)

Kawamata–Tian show that if we have the i∂∂-lemma, we get genuine
smoothings from the first-order ones.

If we start with a 3-fold with trivial canonical bundle, the resulting manifolds
still have trivial canonical bundle.

Fantasy 1.2 (Reid)
All Calabi–Yau 3-folds are connected by a sequence of conifold transitions.
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Topological Changes
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Figure: A Conifold Transtion

Topologically, a conifold transition contracts 2-cycles from the small
resolution and generates 3-cycles on the smoothing.

In particular, if we contract N curves with k linearly independent curves

b2(Xt) = b2(X̂)− k, b3(Xt) = b3(X̂) + 2(N − k). (2)
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An Example

Let X̂ be a quintic 3-fold in P4 and so b2(X̂) = 1. If we pick 2 linearly
dependent curves E1 and E2 and apply a conifold transition, the resulting
smoothing Xt has b2(Xt) = 0.

The Kähler conditon is NOT preserved.

This implies that our main objects of study should include those non-Kähler
manifolds obtained from Kähler ones through conifold transitions.



Generalizing the Kähler Condition
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The Hull–Strominger System

It is conjectured that the general framework for compact non-Kähler geometry
should involve not 1, but 2 metrics.

Let X be a Calabi–Yau 3-fold and E → X a holomorphic vector bundle. We
have a nowhere vanishing holomorphic (3,0)-form Ω.

For a fixed constant α′ ∈ R, we have the Hull–Strominger system which wants
a pair of metrics H on E and ω on X such that

FH ∧ ω2 = 0, (3)

i∂∂ω =
α′

4

(
tr (Rmω ∧ Rmω)− (tr FH ∧ FH )

)
, (4)

d(∥Ω∥ωω2) = 0. (5)

If we take E = T1,0X , and H = g, we see that the Hull–Strominger system
generalizes the Ricci-flat Kähler condition on X .
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The Hull–Strominger System II

FH ∧ ω2 = 0, (3)

i∂∂ω =
α′

4

(
tr (Rmω ∧ Rmω)− (tr FH ∧ FH )

)
, (4)

d(∥Ω∥ωω2) = 0. (5)

This system of equations arises from heterotic string theory, characterized in
terms of SU(3)-structures.

Looking ahead, we will see that both (3) and (5) can be solved through conifold
transitions.

It is conjectured that conifold transitions preserves the solvability of the full
Hull–Strominger system.



Metric Geometry on Conifold Transitions



Local Geometry



Conifold Transitions Metric Geometry on Conifold Transitions Gromov–Hausdorff Convergence

Candelas–de la Ossa Metrics

Recall our local models are
• the small resolution: V̂ = O(−1)⊕O(−1)→ P1,
• the cone: V0 = {z2

1 + z2
2 + z2

3 + z2
4 = 0} ⊆ C4,

• the smoothing: Vt = {z2
1 + z2

2 + z2
3 + z2

4 = t} ⊆ C4.

Candelas–de la Ossa have constructed Ricci-flat Kähler metrics on each of
these spaces which will be the basis of our model local geometry.
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On the Small Resolution

T̂ (ρ)

P1

r
p

SR(p)

T̂ (R · ρ)

Figure: Local Small Resolution Model

On V̂ = O(−1)⊕O(−1)→ P1, we have a “radius” function r that measures the
distance from a point to the zero section with respect to the Fubini–Study
metric ω̂FS.

In this sense, we can think of local neighbourhoods containing the P1 as
“tubes” of a certain radius and we can scale points up and down their
respective fibres using this radius function.
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On the Small Resolution II

Candelas–de la Ossa considered metrics of the form

ω̂co,a = i∂∂fa(r) + 4a2ω̂FS (6)

where a is some parameter.

If we impose the Ricci-flat Kähler condition, we end up with a DE that
determines the functions fa . This also gives a nice scaling property

fa(r) = a2f1
( r

a

)
. (7)

From this, we see that this family of metrics depends smoothly on the
parameter a.
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On the Cone

After identifying via the blowdown map, the function r becomes the function

r = ∥z∥
1
3 on V0 = {z2

1 + z2
2 + z2

3 + z2
4 = 0}.

Further, as a → 0, the metrics ω̂co,a approach the cone metric 1
2ωco,0 = i∂∂r2

on compact sets away from the singularities.

This metric turns out to be a cone metric over the link S2 × S3 in the sense
that

gco,0 = dr ⊗ dr + r2 · gS2×S3 , (8)

and is well-behaved away from the singularity.
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On the Smoothing

SR(p)

p
0

Dt(ρ) ⊂ Vt

DR·t(R · ρ) ⊂ VR·t

Figure: Local Smoothing Model

On Vt = {z2
1 + z2

2 + z2
3 + z2

4 = t} we have the same “radius” function r and by
scaling this radius, we can move between the spaces Vt for t ̸= 0.

On these spaces, the Candelas–de la Ossa Ansatz is

ωco,t = i∂∂ft(r), (9)

where t is some parameter. Imposing the Ricci-flat Kähler condition yields a
similar scaling result to the small resolution.
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On the Smoothing II

V0

r > ( t
2 )

1
3 r > t

1
3

Φt

Vt

Figure: The Diffeomorphism Φt

To compare these metrics to the cone, we need to pull them back via some
maps. Scaling the metric doesn’t work so we need a more complicated map.

Define the maps Φt(z) : C4\{0} → C4

Φ(z) = z +
tz

2∥z∥2
. (10)

These map V0 to Vt and (after cutting out certain sets) are diffeomorphisms.

After pullback, we get a similar limiting behaviour of metrics away from the
singularities:

Φ∗
t (gco,t)→ gco,0. (11)
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Properties

Here is a summary of a couple of important properties of the Candelas–de la
Ossa metrics.

1. Normalization:
• ĝco,a = a2 · S∗

a−1 (ĝco,1),

• gco,t = t
2
3 · S∗

t
− 1

3
(gco,1),

2. Asymptotically Conical Decay:
• |(π−1)∗(ĝco,a) − gco,0|gco,0 ≤ Ca2r−2,
• |(Φt)

∗(gco,t) − gco,0|gco,0 ≤ Ctr−3.



Balanced Metrics
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Fu–Li–Yau Metrics

Suppose we begin with a Kähler Calabi–Yau 3-fold X̂ and consider its
blowdown X0 = π(X̂).

In line with the study of balanced metrics (dω2 = 0) in complex geometry
initiated by Michelsohn, Fu–Li–Yau constructed balanced metrics which are
close to (a multiple of) the Candelas–de la Ossa metrics near the singularities/
vanishing cycles.

This was done via a gluing construction and heavily utilizes the local model
geometry to maintain positivity of the forms involved.
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On the Small Resolution and Conifold

X0

si
R · ω2

co,0

ω2
CY

Interpolation region
1
R ≤ r ≤ 2

R

Figure: The Fu–Li–Yau Gluing Construction

The general process finds a gluing region and constructs a form Ω0
interpolates between the squared metrics ω2

co,0 and ω2
CY .

A similar process can be done on the original manifold X̂ with the
Candelas–de la Ossa metrics ω̂co,a and the Calabi–Yau metric ω̂CY .

The gluing region and cutoff function is independent of the parameter a and is
also smooth in a.
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On the Smoothing
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Figure: The Fu–Li–Yau Gluing Construction

In order to get balanced metrics on the smoothing, we use the maps Φt to
push the squared Fu–Li–Yau metric Ω0 on the singular space X0 onto Xt away
from the singularities/ vanishing cycles and glue them to (a multiple of) the
squared Candelas–de la Ossa metrics ω2

co,t .
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On the Smoothing II

So far, this only produces a form on each Xt since Φt is only diffeomorphic
onto its image, not biholomorphic. In order to obtain something amenable to
the changing complex structure, we must project to the (2,2) component.
This gives a positive (2,2) form which we can take the square root of to get an
auxiliary Hermitian metric ωt .

We now have something of the right type, but may not be closed so a
perturbation term γt needs to be added. This extra perturbation term is
related to a solution of the Kodaira–Spencer operator and is shown to be small
enough to maintain positivity of the overall form.

These processes are done smoothly in the parameter t.
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Properties

Like the Candelas–de la Ossa metrics, there are two properties of the
Fu–Li–Yau balanced metrics that we note in particular

1. Local Model: Around each (−1,−1)-curve/ vanishing sphere
• ĝFLY ,a = R · ĝco,a ,
• |gFLY ,t − c · gco,t |gco,t ≤ Ct

2
3 ,

2. Uniform Convergence: On compact sets away from the singularities
• (π−1) ∗ ĝFLY ,a → gFLY ,0 uniformly as a → 0,
• (Φt)

∗gFLY ,t → gFLY ,0 uniformly as t → 0.



Hermitian Yang–Mills Metrics
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Collins–Picard–Yau Metrics

Recall our setup of a Kähler Calabi–Yau 3-fold X̂ and the conifold transition
X̂ → X0 ⇝ Xt . We also suppose that X̂ is simply connected.

Collins–Picard–Yau constructed families of Hermitian Yang–Mills metrics on
the tangent bundles with respect to the Fu–Li–Yau balanced metrics.
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On the Small Resolution

The simply connected condition gives a stability condition with respect to the
original Ricci-flat Kähler metric ω̂CY :

1
rk F

∫
X̂

c1(F) ∧ ω̂2
CY < 0, (12)

for each torsion-free coherent subsheaf F ⊂ T1,0X̂ .

On the small resolution X̂ , the Fu–Li–Yau construction is performed such that
[ω̂2

FLY ,a ] = [ω̂2
CY ] and so this is passed onto the Fu–Li–Yau metrics ω̂FLY ,a :

1
rk F

∫
X̂

c1(F) ∧ ω̂2
FLY ,a < 0, (13)

Using an analog of the Donaldson–Uhlenback–Yau Theorem due to Li–Yau, we
obtain Hermitian Yang–Mills metrics Ĥa with respect to ω̂FLY ,a .
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On the Conifold and the Smoothing

After normalization, Collins–Picard–Yau show that a limiting metric Hermitian
Yang–Mills metric H0 with respect to ωFLY ,0 can be constructed on X0. This is
done by adapting a C0-estimate calculation by Uhlenbeck–Yau.

The process to obtain metrics on the smoothing is similar to that of
Fu–Li–Yau. We can pull the metric H0 onto Xt via the map Φt and glue them to
the Candelas–de la Ossa metrics. These metrics then need to be perturbed to
fulfill the desired properties.
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Properties

The Hermitian Yang–Mills metrics on both the small resolution and the
smoothing also satisfy a couple of important properties

1. Uniform Equivalence:
• C−1 · ĝFLY ,a ≤ Ĥa ≤ C · ĝFLY ,a ,
• C−1 · gFLY ,t ≤ Ht ≤ C · gFLY ,t .

2. Uniform Convergence: On compact sets away from the singularities
• (π−1)∗Ĥa → H0 uniformly as a → 0,
• (Φt)

∗Ht → H0 uniformly as t → 0.



Gromov–Hausdorff Convergence
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Families of Distance Spaces

We have sequences of distance spaces satisfying preserved properties through
conifold transitions:

• (X̂ , ĝFLY ,a) and (Xt , gFLY ,t) satisfy the balanced condition,

• (X̂ , Ĥa) and (Xt ,Ht) satisfy the Hermitian Yang–Mills condition.

These are bridged by singular spaces (X0, gFLY ,0) and (X0,H0) respectively
with Riemannian metrics (except on their singular sets which are a finite set of
points).

Our Riemannian metrics are all locally uniformly equivalent to the cone metric
dr ⊗ dr + r2 · gS2×S3 . We can extend the Riemannian metrics by 0 to the
singularities.

This breaks positivity, but does not affect lengths of curves, since the
singularities are isolated points and so we get bona fide distance functions on
X0. In this way, we can also view (X0, gFLY ,0) and (X0,H0) as distance spaces.
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Gromov–Hausdorff Topology

The space of compact distance spaces (modulo isometry)M can be endowed
with a topology. We can understand this topology at the level of maps between
these spaces.

Definition 3.1
A map f : X → Y between two compact distance spaces is an ϵ-isometry if
• |dX (p, q)− dY (f (p), f (q))| < ϵ for all p, q ∈ X ,
• Y ⊆ Bϵ(f (X)).

Definition 3.2
The Gromov–Hausdorff distance dGH between two compact distance spaces is

dGH ((X ,dX ), (Y ,dY )) = inf{ϵ > 0 | There exist ϵ− isometries

f1 : (X ,dX )→ (Y ,dY ), f2 : (Y ,dY )→ (X ,dX )}.
(14)

In general, its enough to only show an ϵ-isometry from X to Y because we can
construct a 3ϵ-isometry in the other direction.
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Conifold Transitions are a Continuous Process (Regular Case)

We have the following result about conifold transitions from an initially Kähler
Calabi–Yau 3-fold.

Theorem 3.3 (B. Friedman–Picard–S.)
Each of the maps
• (0,1]→M : a 7→ (X̂ , ĝFLY ,a),

• (0,1]→M : a 7→ (X̂ , Ĥa),
• ∆\{0} →M : t 7→ (Xt , gFLY ,t),
• ∆\{0} →M : t 7→ (Xt ,Ht),

are continuous in the Gromov–Hausdorff topology.
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Conifold Transitions are a Continuous Process (Singular Case)

The more interesting case is what happens as the parameters a and t
approach 0.

Theorem 3.4 (B. Friedman–Picard–S.)
We have the following limits in the Gromov–Hausdorff topology:
• (X̂ , ĝFLY ,a)→ (X0, gFLY ,0)← (Xt , gFLY ,t) as a, t → 0,

• (X̂ , Ĥa)→ (X0,H0)← (Xt ,Ht) as a, t → 0,

Song (building on work by Rong–Zhang) proved a result similar to Theorem
3.4 in the case where the manifolds are projective and the metrics are
Ricci-flat Kähler.



The Regular Case



Conifold Transitions Metric Geometry on Conifold Transitions Gromov–Hausdorff Convergence

The Small Resolution

Sketch of Proof (a 7→ (X̂a , ĝFLY ,a))
The idea here is that Gromov–Hausdorff continuity is a weaker notion than
uniform convergence of Riemannian metrics.

To show continuity overall, we pick a point b ∈ (0,1] along the path and use
the corresponding metric ĝFLY ,b as a reference metric.

The squared metrics ω̂2
FLY ,a have expressions smooth in a and p ∈ X̂ and so

|ω̂2
FLY ,a − ω̂2

FLY ,b| is smooth in a and p.
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The Small Resolution II

Sketch of Proof (a 7→ (X̂a , ĝFLY ,a) (cont’d))
Pick some compact interval I ⊆ (0,1] containing b. Then ∇|ω̂2

FLY ,a − ω̂2
FLY ,b| is

smooth on I × X̂ . Compactness of I × X̂ gives uniform boundedness of the
covariant derivative on I.

By Arzelà–Ascoli, the convergence ω̂2
FLY ,a → ω̂2

FLY ,b is uniform. Taking a square
root of these forms is a continuous process so the metrics ĝFLY ,a converge
uniformly to ĝFLY ,b with respect to ĝFLY ,b.

This ultimately tells us that the identity map on X̂ is an ϵ-isometry for a
sufficiently close to b.
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The Smoothing

Sketch of Proof (t 7→ (Xt ,gFLY ,t))
We have a couple of added difficulties here:
• the Fu–Li–Yau metrics on the smoothings involve a pullback and also a

perturbation;
• the metrics gFLY ,t all lie on different manifolds Xt , but we have

diffeomorphisms between them.

Because of this, we need to be more careful. As before, fix some s ∈ (0,1] and
use gs as a reference metric. Let Ft : Xs → Xt be the family of diffeomorphisms.

We can write ω2
FLY ,t = ω2

t + γt , where ωt is the auxiliary Hermitian metric and
γt is the perturbation term in the Fu–Li–Yau construction.

The auxiliary metrics ωt (after pullback to Xs) are managed in a similar
manner to the first path and so F∗

t ω
2
t → ω2

s uniformly with respect to ωs.
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The Smoothing II

Sketch of Proof (t 7→ (Xt ,gFLY ,t) (cont’d))
The extra terms γt satisfy a differential equation for the Kodaira–Spencer
operator Et . In particular, each γt solves

Et(γt) = ∂ω2
t , (15)

where
Et = ∂∂∂

†
∂† + ∂†∂∂

†
∂ + ∂†∂, (16)

with respect to ωt .

The idea here is that the RHS of (15), the complex structure on Xt and also the
auxiliary metrics ωt all vary smoothly in t and so γt must also do the same (up
to adding elements in the kernel).

By our assumptions on the initial manifold, we can show that each Et has
trivial kernel and so each γt is determined uniquely.
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The Smoothing III

Sketch of Proof (t 7→ (Xt ,gFLY ,t) (cont’d) (cont’d))
From what we learned about the auxiliary metrics ωt , we can uniform
Schauder estimates on Xt for t close to s:

∥γt∥C4,α ≤ C · (∥γt∥C0 + ∥Et(γt)∥C4,α ). (17)

Using Arzelà–Ascoli, we can show that F∗
t γt converge uniformly to a limit

which we can show to be γs. The idea here is that if we assume otherwise, we
can pick a convergent subsequence which violates one of our other
established bounds.

Combining the two parts, we get that F∗
t ω

2
FLY ,t → ω2

FLY ,s uniformly and we can
take a square root again to get the result.
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The Hermitian Yang–Mills Metrics

The paths using the Hermitian Yang–Mills metrics can be proven using the
same ideas.

They satisfy some uniform equivalence conditions and some standard
derivative estimates and so using the same Arzelà–Ascoli trick and uniqueness
and normalization, convergence of our sequences must be uniform.



The Singular Case
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General Idea

X̂
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π Φt

Figure: General Idea

We have natural maps between our spaces that we want to show are
ϵ-isometries.

Since everything away from the contracted curves/ spheres/ singularities are
well-behaved, we want to show that the local models “can be made arbitrarily
small”. There is a similar idea in work of Song–Weinkove on contracting
exceptional divisors by the Kähler–Ricci flow.
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General Idea II

X̂

Ei

X0

si

Gi

(π−1)∗Gi diamFLY ,a((π
−1)∗Gi) < ϵ

π

Metrics converge uniformly

π is diffeomorphic

diamFLY ,0(Gi) < ϵ

Figure: “Small” Local Geometry
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Bounds on the Small Resolution

We want to get a handle of the diameter of a “tube” T̂ (δ) = {r ≤ δ} around a
contracted P1 ⊆ V̂ with respect to the Fu–Li–Yau metric ĝFLY ,a .

The Fu–Li–Yau metric is a multiple of the Candelas–de la Ossa metric near the
contracted curves on the small resolution and so we just work with those
metrics instead.

1. Normalization: ĝco,a = a2 · S∗
a−1 (ĝco,1),

2. Asymptotically Conical Decay: |(π−1)∗(ĝco,a)− gco,0|gco,0 ≤ Ca2r−2.

We can find a constant K such that

|(π−1)∗(ĝco,a)− gco,0|gco,0 ≤
1
2

(18)

when r > aK.
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Estimating the Diameter

P1

p

q

T̂ (δ)

Figure: Path Connectedness

We estimate the diameter of this set by considering paths between general
points. The paths we look at in particular move down along the fiber, along
the zero section P1 and up along another fiber.
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Splitting the Tube

T̂ (aK)

P1 T̂ (δ)

Figure: Splitting Tubes

We ultimately want uniform bounds on the diameter of this set.

For a ≤ δ
K , we break our “tube” T̂ (δ) = {r ≤ δ} into two parts:

• a smaller “tube” T̂ (aK) which we will pull back and compare to ĝco,1,

• and an “annulus” T̂ (δ)\T̂ (aK) which we will compare to gco,0.
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Tubular Bounds

Using the normalization property, we can compare lengths of curves using the
metric ĝco,a and using the metric ĝco,1.

Given a curve γ : [0,1]→ T̂ (aK) we have

L̂co,a(γ) =

∫ 1

0

√
ĝco,a

(
γ̇(s), γ̇(s)

)
ds

=

∫ 1

0

√
a2 · S∗

a−1 (ĝ1)
(
γ̇(s), γ̇(s)

)
ds

= a ·
∫ 1

0

√
ĝco,1

(
(Sa−1 )∗γ̇(s), (Sa−1 )∗γ̇(s)

)
ds

= a · L̂co,1(Sa−1 ◦ γ),

This means that d̂iamco,a(T̂ (aK)) = a · d̂iamco,1(T̂ (K)).

The set T̂ (K) is independent of a and is compact and so d̂iamco,1(T̂ (K)) is a
constant.
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Annular Bounds

T̂ (aK)

D0(aK)
P1

0
T̂ (δ)

D0(δ)
π

p π(p)

Figure: Pushing the Curve Forward

We look at the distance from a point in this set to the “tube” T̂ (aK). As
previously mentioned, the simplest curve to consider is one along the fibre
towards the P1.

Pick a point p with aK < r(p) = ρ ≤ δ. We can describe our desired curve in
coordinates and use the blowdown map to push this to the cone V0.
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Annular Bounds II

We can use the cone metric to measure this new curve

Lco,0(γ) = (ρ− aK). (19)

We can also use the asymptotically conical decay estimate to get that

|L̂co,a(γ̂)− Lco,0(γ)| ≤ Ca ·
( 1

K
−

a
ρ

)
. (20)

Combining these, we get that

L̂co,a(γ̂) ≤ Ca ·
( 1

K
−

a
ρ

)
+ (ρ− aK). (21)

and for 0 < a ≤ δ
K and aK < ρ ≤ δ the RHS is bounded by C · (δ − aK).

This gives an upper bound on the distance from a point in the “annulus”
T̂ (δ)\T̂ (aK) to the “tube” T̂ (aK).
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Combined Bound

If we combine our two bounds, we get

d̂iamco,a(T̂ (δ)) ≤ a · d̂iamco,1(T̂ (K)) + 2C · (δ − aK), (22)

which for fixed δ and K, is uniformly bounded for 0 < a ≤ δ
K .

Rewriting this gives
d̂iamco,a(T̂ (δ)) ≤ C · δ (23)

for all 0 < a ≤ δ
K where C is a uniform constant.

As such, we have shown that for any ϵ > 0, we can find some δ = ϵ
C > 0 and

some a0 ∈ (0,1] such that
d̂iamco,a(T̂ (δ)) ≤ ϵ (24)

for all a ≤ a0 ≤ δ
K = ϵ

CK .
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Bounds on the Cone

T̂ (aK)

D0(aK)
P1

0
T̂ (δ)

D0(δ)
π

p π(p)

Figure: Pushing the Curve Forward

We can check that the blowdown map π maps the “tube” T̂ (δ) to the “disc”
D0(δ) = {r ≤ δ} around 0 ∈ V0.

Using the cone metric, we see that

diamco,0(D0(δ)) ≤ 2δ. (25)

So, for any ϵ > 0 we can find some δ = ϵ
2 > 0 such that

diamco,0(D0(δ)) ≤ ϵ. (26)
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ϵ-Isometries

X̂

Ei

X0

si

Gi = D0(δ)

(π−1)∗Gi = T̂ (δ)

π

Gi can be made “arbitrarily small”

Metrics converge uniformly
π is diffeomorphic

Figure: An ϵ-Isometry

In essence, we have shown that for any ϵ > 0 we have a set Gi = D0(δ)
containing each singularity si with diamFLY ,0(Gi) < ϵ with preimage

π−1(Gi) = T̂ (δ) containing the (−1,−1)-curve Ei and d̂iamFLY ,a(π
−1(Gi)) < ϵ

for a ≤ δ
K .

Combined with uniform convergence away from these sets, we see that π is an
ϵ-isometry for sufficiently small a.
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The Other Cases

A similar idea works for the smoothings.

We can get sufficiently small sets with respect to the Candelas–de la Ossa
metrics ωco,t , but these are not the Fu–Li–Yau metrics yet.

The difference between the Fu–Li–Yau metrics and the Candelas–de la Ossa
metrics is small, so the above can be achieved with respect to the Fu–Li–Yau
metrics as well.

To get the Hermitian Yang–Mills metrics, we use uniform equivalence of the
metrics to the Fu–Li–Yau metrics to get the analogous result.

These ϵ-isometries imply the Gromov–Hausdorff convergence of our spaces.



Thank you for your attention.
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